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Correspondence in Stereoscopic Images G

Brewster
Stereoscope, 1856

A “photo” for
each eyes

Correspondence established by the human visual system.
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Correspondence by classical narrow-baseline stereo methods,
e.g. Cox 1996

. Matas IMW & CVPR 2019.06.16
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Correspondence Problems

Given images A and B, find a geometric model linking them and a
set of features consistent with the model.

J. Matas IMW & CVPR 2019.06.16
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Given images A and B, find a geometric model linking them.

Given images A and B, and a geometric model linking them
(F, E, H), estimate reliably the confidence that the model is correct.

If images A and B are geometrically unrelated, establish fast and
with high confidence this fact.

Given a set of nimages A, select a subset of pairs that are
geometrically related much faster then in time proportional to r°.

(Registration) Given images A and B and an approximation of the
geometric model linking them (F, E, H), find the highest precision
model.
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Wide Baseline Stereo (WBS), circa 2000 &

Widening of the baseline, zooming in/out, rotation

. Matas IMW & CVPR 2019.06.16

Standard approach:

D. Lowe, 2000, SIFT

Also:

Mikolajczyk & Schmid,
Tuytelaars & van Gool,
Matas et al. and many
other




Classical Two-view Correspondence Pipeline |®
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Morel, Yu: ASIFT: A New Framework for Fully Affine Invariant Image Comparison. SIAM JIS 2009
Mishkin, MODS: Fast and robust method for two-view matching. CVIU 2015
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Correspondence Verification =

e Difficult matching problems:
— Rich 3D structure with many occlusions
— Small overlap

— Image quality and noise

— (Repetitive patterns)

measurement region too large measurement region too small
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Correspondence Verification by Co-segmentation

(e

e high discriminability

— significantly outperforms a standard selection process based SIFT-ratio
e very fast (0.5 sec / 1000 correspondences)
e always applicable before RANSAC

e the process generating tentative correspondences can be much more
permissive

— 99% of outliers not a problem, correct correspondences recovered

— higher number of correct correspondences

J. Matas IMW & CVPR 2019.06.16



Classical Two-view Correspondence Pipeline |®

detector 1 descriptors 1

Tentative
|1 s C) LT correspondences
Matching 5| RANSAC
detector 2 descriptors 2 |
[TTITTTIT]
b |— 2| T -
Final correspondences
T (+ model)
DoG SIFT 15t to 2" distance ratio RANSAC

Hessian RootSIFT 15t geometric inconsistent RANSAC++

15t Geometricly Inconsistent Constraint
[Mishkin et al., Two-View Matching with View
Synthesis Revisited. IVCNZ 2013]
(rediscovered: in [Sarlin et.al, CVPR 2019)

similar constraints used for training descriptors:
SuperPoint (CVPRW 2018), D2Net (CVPR
2019), RFNet (arXiv 2019, called “neighbor

mask’’)
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MAGSAC (Barath et al., CVPR 2019, Poster 3-1.158)

|dea: do not require the user to provide the scale.
The optimal one is different for every problem.

RMSE of infiers (in px)
i o

RMSE of infiors (in px)
s EEEEE®
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Marginalize: the result is a weighted average over a (@ homogx datase (b) EVD datas
range of o, weighted by the log-likelihood for the mode.
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Data interpretation and model likelihood

=
{n

Distribution assumptions:
e Qutliers are uniformly distributed (~U(0,1))

Typically, the inlier residuals are calculated as the Eucledian-
distance from the model in a p-dimensional space. Thus,

e the inliers residuals have chi-square distribution

Distance function

Likelihood of model 0 given o: /\
—D?(0, x)

L(ng)_lm 1(0) 1_[ 2C(p)a™PDP™(6,x) exp— ]

/'Y }xEI(?-)\\ Y‘\ |
Comes from the Set of inliers Comes from the
outlier distribution which o implies inliers’ distribution
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GC-RANSAC [Barath and Matas, CVPR 2018]

(d) Proximity (e) Local Opt #1 (f) Local Opt #2

Figure 1: The proposed graph-cut based local optimization
converging from a “not-all-inlier” sample, i.e. it is contam-
inated by an outlier, to the desired model. (a) The input
data points, (b) RANSAC-like sampling and model fitting,
(c) computation of model support, e.g. counting the inliers,
(d) considering spatial proximity by graph-cut, (e-f) iterated

local optimization using least-squares fitting and graph-cut.
J. Matas IMW & CVPR 2019.06.16



GC RANSAC - Performance

o
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Figure 7: The breakdown of the processing times in mil-
liseconds. Computed as the mean of all tests. Best viewed
in color.
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Is Classical Two-view Pipeline Dead? Dying?

detector 1 descriptors 1

. T Tentative
— - correspondences
g % ([T
= I \
Matching | _ RANSAC
detector 2 descriptors 2 |
(o (LTI
N < | Imdiniiinii
'“&:/‘ Final correspondences
LT (4+ model)
DoG SIFT 1st to 2" distance ratio RANSAC

Hessian RootSIFT 15t geometric inconsistent RANSACH+

* Learnt descriptors superior: HardNet, ContextDesc; but that does not change the
pipeline

» Detection and description learnt together, possibly also the metric for matching:
SuperPoint, D2Net have superior results

 RANSAC-like differential methods for end-to-end pipelines:
e Ranftl and Koltun, Deep Fundamental Matrix Estimation, ECCV 2018

e Brachmann, PhD thesis, 2018
J. Matas IMW & CVPR 2019.06.16



Classical Two-view Pipeline Dying? @ o

D. DeTone, T. Malisiewicz, A. Rabinovich:
SuperPoint: Self-Supervised Interest Point Detection and
Description. CoRR abs/1712.07629 (2017):

Convolutional neural networks have been shown to be
superior to hand-engineered representations on almost all
tasks requiring images as input.
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The Classical Pipeline: what is the verdict of the Image Matching:
Local Features & Beyond CVPR 2019 Workshop Challenge?

We appreciate the collaboration of the organizers.
Big thank you goes to:

Eduard Trulls trulls@google.com

Kwang Moo Yi kyi@uvic.ca

Thanks to the authors of:
e COLMAP who made this type of challenge possible

— Johannes Schonberger, Jan-Michael Frahm

e Challenge Contributors that provided their results to us
— Mihai Dusmanu (D2Net)
— Zixin LUO (ContextDesc)

— Daniel DeTone (SuperPoint)

J. Matas IMW & CVPR 2019.06.16
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Stereo best mMAP15: 8%
SfM best mAP15:  73%

Why? Seems that something is wrong? Plus SfM seems simpler!

|P1] Phototourism dataset — Stereo task
Performance in stereo matching, averaged over all the test sequences.

» Click here for a breakdown by sequence

Show |10 ~ entries Search:

Stereo — averaged over all sequences

Method Date Type #kp MS mAPS5" mAP10° mAP'S* o mAP2” mAP25°

@ SIFT + ContextDesc + Inlier
Classification V2 19-05-28
kp:8000, match:custom

75152 03633 0.0016 0.0217 0.0823 0.1818 0.2963

[P2] Phototourism dataset — Multi-view task

Performance in SfM reconstruction, averaged over all the test sequences.

= Click here for a breakdown by seguence
+ Click here for a breakdown by subset size

Show |10 r~ | entries Search:

MVS — averaged over all sequences

Method Date Type Ims (%) #Pts SR L mAPS” mAp10° mAPS o mAp20” mAp25" ATE

Q) SIFT+

ContextDesc +

Inlier R .
Classification V2 T :
kp:8000,

match:custom

J. Matas IMW & CVPR 2019.06.16 17/40

389 0.7750 0.8006



Examples of image pairs — nothing super difficult

Q map5S mapl0 mapl5 map 25

J. Matas IMW & CVPR 2019.06.16 18/40



Examples of image pairs

Q map5S mapl0

J. Matas IMW & CVPR 2019.06.16 19/40



Examples of image pairs

Q map5S mapl0 map 35
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What are the differences in Stereo vs. SfM evaluatin?

Stereo:|features = matching|=|OpenCV RANSAC = pose estimation

SfM: |features = matching |= |[COLMAP RANSAC + bundle adjustment = pose estim.

Participants Hidden, organizers

Seems that there is a problem with RANSAC or its parameters.

(not visible nor tunable by participants)

J. Matas IMW & CVPR 2019.06.16 21/40



Our changes in camera pose estimation in evaluation

Before: normalize keypoints by K After: run RansacF (threshold in pixels)
and run get E from F by formula E = K' F K

RansacE (threshold hard to interpret)

def normalize keypoints(keypoints, image shape, K):
C x = (image shape[1] - 1.0) * 0.5
C y = (image_shape[0] - 1.0) * 0.5
# Correct coordinates using K
C x += K[0, 2]
Cy += K[1, 2]
f x = K[0, 0]
fy =K[1, 1]
keypoints = (keypoints - np.array([[C x, C y]1])) / np.array([[f x, T v1])
return keypoints

def eval decompose(): def eval_decompose_F():

kpl = normalize_keypoints(kpl, imgl_shp, calcl["K"]) F, mask_new = cv2.findFundamentalMat(
kp2 = normalize keypoints(kp2, img2 shp, calcz["K"]) kpi, kpZ, method, 11.0,8.99)
E, mask new = cv2.findEssentialMat( E = np.matmul(np.matmul(K2.T,F),K1)

kpl, kp2, method=method, threshold=0.01)

K =[[ 866, 0, 5055 |,
[ 0, 866 , 379 |
[0, 0, 1 ]

det(K)~(%.) = 58

J. Matas IMW & CVPR 2019.06.16 22/40



Pose precision, recovered by the competition procedure for SIFTs —
The OpenCV detector and descriptor

stereo mAP, reichstag seq, OpenCV SIFT feats, SNN = 0.8

MAGSAC(S=1)
MAGSAC(S=2)

MAGSAC(S=10,
default)

OpenCV F(th=0.5 px)

OpenCV F(th=1 px)

(

(

OpenCV F(th=10 px)

OpenCV F(th=20 px)
(

OpenCV F(th=50 px)

OpenCV E(th=0.01,
competition)

mAP 10 mAP 15

J. Matas IMW & CVPR 2019.06.16
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Re-evaluated results: everyone benefits =
- Winner is the same, . SIFT > SuperPoint now.
. Ratio test is super important . HardNet is a strong baseline

mAP 15°, stereo, all seq

0,58

B OpenCVSIFT nn

B OpenCV SIFT, SNN=0.8
SuperPoint-nn
SuperPoint, SNN=0.8
SuperPointCustom

B SIFT-ContextDesc-nn

SIFT-ContextDesc-nn,

SNN=0.8
B SIFT-ContextDesc-custom
0.08 (winner)
B SIFT-HardNet-nn
n ._l. B SIFT-HardNet, SNN=0.8
Competition (Ransack, th = RansacF (th=1px) ->
0.01) E=K*F*K

J. Matas IMW & CVPR 2019.06.16



stereo mAP 15, all segs, RansacF (th=1px)

0,600 I NN

B SNN ratio
FGINN ratio
B Leamned
0,400
0,200
0,000

OpenCV SIFT HesAffNet-HN2 SIFT-ContextDesc SuperPoint

Learned
Moo Yi, Trulls, Ono, Lepetit, Salzmann, Fua:
Learning to Find Good Correspondences, CVPR 2018

J. Matas IMW & CVPR 2019.06.16 25/40



CMP Lessons: Does AffNet help?

stereo mAP 15, all segs, RansacF (th=1px)

0,600 | Hes-HardNet?2

B HesAffNet-HardNet2

Hes-HardNet2-upscale2x

B HesAffNet-HardNet2-
upscale2x

0,400

AffNet:

- no improvement, no loss
- the baseline is narrow here

0,200

2x upscale:
- hurt a lot!

0,000
NN SNN ratio FGINN ratio
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CMP Lessons: Does Hessian vs DoG (SIFT) help?

stereo mAP 15, all segs, RansacF (th=1px)

0,600 I DoG-HardNet2

B Hes-HardNet2

0,400

No difference
for this dataset

0,200

0,000

NN SNN ratio FGINN ratio
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AffNet: learning measurement region

S1

ST —P~ == Desc —l
HardNegC

Loss

- = |

Fig. 5. AffNet training. Corresponding patches undergo random affine transformation 775, T;, are
cropped and fed into AffNet, which outputs affine transformation A;, A; to an unknown canonical
shape. ST — the spatial transformer warps the patch into an estimated canonical shape. The patch
is described by a differentiable CNN descriptor. n X n descriptor distance matrix is calculated and
used to form triplets, according to the HardNegC loss.

1 :
L B ; %:Zln max (0‘ l + d(Sia SZ) - d(stﬁ N))ﬂ @

Mishkin et.al. Repeatability Is Not Enough: Learning Affine Regions via Discriminability.
ECCV 2018
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HardNegC loss: treat negative example as constant

Batch ofmput patchec Desr.npturs .Distance matrix
D = pdist(a,p)

d(ay,py) d(ay,pz) d(ay,ps) d(ay,ps)

I S p4m£1;
a, p1 d(az p1)
d(as, pi} d(as, p2) d(as,ps) d(as, ps)
E E o Lo
—>1

Final triplet

i i az Pz (one of n in batch)
'ﬂ-u d(ay, pa,,,) > d(az o P1) = select a,

(.l| azmln
AN YY"

_ Z max (O, 1+ d(SZ‘,Si) — d(Si,N)), g_jl\/f :

1=1,n
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Why HardNegC loss is needed?

J. Matas IMW & CVPR 2019.06.16 30/40












Lessons Learned from the CMP IMW Submission:

e Good and properly set RANSAC is extremely important

e Neither SNN ratio test, nor good RANSAC working on its own
e SNN + good RANSAC is a powerful combination

e FGINN > SNN, use it
e |learning to match gives a moderate boost over SNN

e DoG/Hessian + HardNet + FGINN is very competitive and simple baseline

e AffNet does't harm, potenitally helps for difficult to connect image

J. Matas IMW & CVPR 2019.06.16 31/40



The Correspondence Problem -
Challenges

J. Matas IMW & CVPR 2019.06.16 32/40



Matching in the context of other images (®
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Matching in the context of other images (®
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Matching in the context of other images =
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Finding correspondences =

For a large viewpoint

change (including scale)
=>

the wide-baseline
stereo problem

Applications:
- pose estimation

- 3D reconstruction

- location recognition

NG

PN Na an
J. Matas IMW & CVPR 2019.06.16



Finding correspondences

for large viewpoint change
(including scale)
=>
the wide-baseline (WBS)
stereo problem




Finding correspondences CER

for large

illumination change
=>

wide “illumination-baseline”

stereo problem

Applications:
- location recognition

- summarization of image
collections

J. Matas IMW & CVPR 2019.06.16



Find the matches (look for tiny colored squares...)®

NASA Mars Rover images
with SIFT feature matches

J. Matas IMW & CVPR 2019.06.16 Figure by Noah Snavely



Finding correspondences @
For large iy RSO T -
time difference
=> L i
wide temporal-baseline :

stereo problem

E!

e
o Eemay ~ ,_.m
:
i ,w -

Applications:
- historical reconstruction

- location recognition

- photographer recognition
- camera type recognition



Finding Correspondences ®

change of modality

Applications:
- medical imaging

- remote sensing

Image
Processing,
Analysis,

§ and

4 Machine
Vision

a = s $ 214 %
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with occlusion “almost everywhere”
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“Inprecise” Geometry © &

e}
g- PRAGA 1497
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Retrieving different modalities @

J. Matas IMW & CVPR 2019.06.16
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Thank you!
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