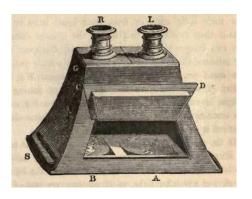
On the Art of Establishing Correspondence

Jiri Matas

Presentation prepared with **Dmytro Mishkin**

Visual Recognition Group Center for Machine Perception Czech Technical University in Prague http://cmp.felk.cvut.cz

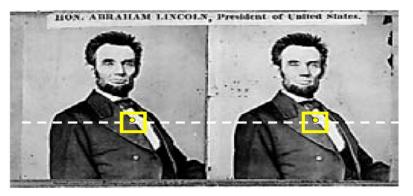
Correspondence in Stereoscopic Images



Brewster Stereoscope, 1856

> A "photo" for each eyes

Correspondence established by the human visual system.



Correspondence by classical narrow-baseline stereo methods, e.g. Cox 1996

Given images A and B, find a geometric model linking them and a set of features consistent with the model.

Given images A and B, find a geometric model linking them.

Given images A and B, and a geometric model linking them (F, E, H), estimate reliably the confidence that the model is correct.

If images A and B are geometrically unrelated, establish fast and with high confidence this fact.

Given a set of *n* images A_i , select a subset of pairs that are geometrically related much faster then in time proportional to n^2 .

(Registration) Given images A and B and an approximation of the geometric model linking them (F, E, H), find the highest precision model.

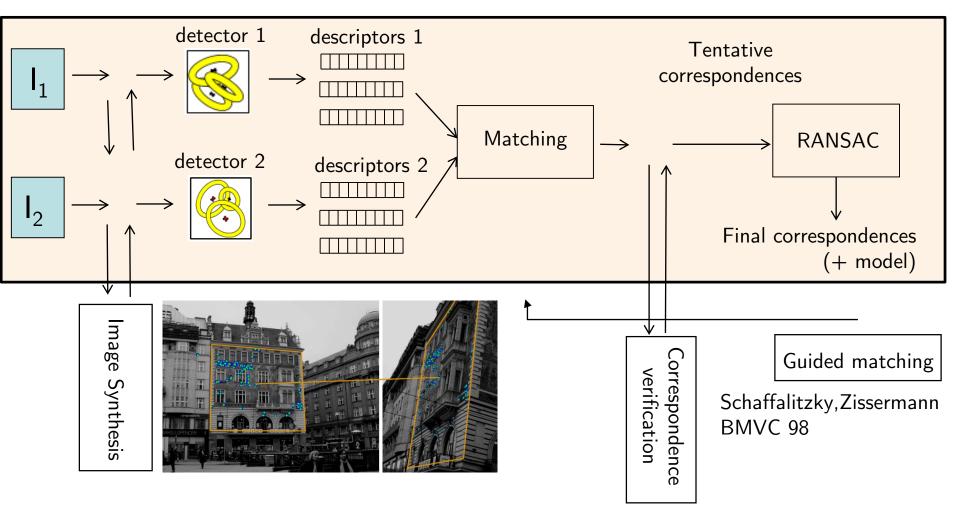
Widening of the baseline, zooming in/out, rotation

Standard approach:

D. Lowe, 2000, SIFT

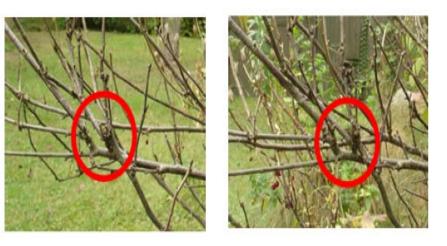
Also:

Mikolajczyk & Schmid, Tuytelaars & van Gool, Matas et al. and many other



Morel, Yu: ASIFT: A New Framework for Fully Affine Invariant Image Comparison. SIAM JIS 2009 Mishkin, MODS: Fast and robust method for two-view matching. CVIU 2015

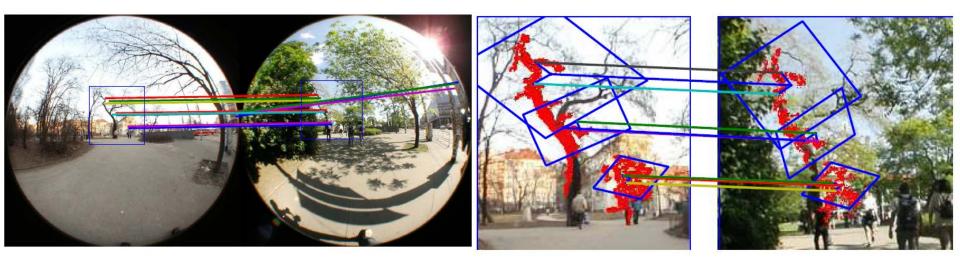
- Difficult matching problems:
 - Rich 3D structure with many occlusions
 - Small overlap
 - Image quality and noise
 - (Repetitive patterns)



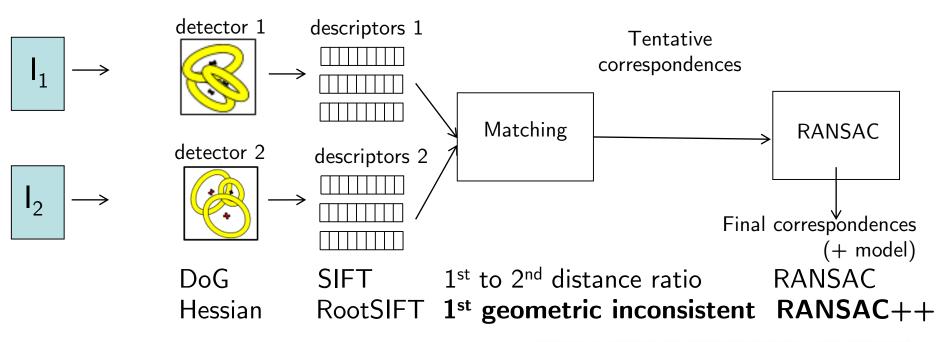
measurement region too large

measurement region too small

- high discriminability
 - significantly outperforms a standard selection process based SIFT-ratio
- very fast (0.5 sec / 1000 correspondences)
- always applicable before RANSAC
- the process generating tentative correspondences can be much more permissive
 - 99% of outliers not a problem, correct correspondences recovered
 - higher number of correct correspondences



Classical Two-view Correspondence Pipeline



1st Geometricly Inconsistent Constraint [Mishkin et al., Two-View Matching with View Synthesis Revisited. IVCNZ 2013] (rediscovered: in [Sarlin et.al, CVPR 2019)

similar constraints used for training descriptors: SuperPoint (CVPRW 2018), D2Net (CVPR 2019), RFNet (arXiv 2019, called "neighbor mask")

MAGSAC (Barath et al., CVPR 2019, Poster 3-1.158)

💇 <mark>m p</mark> 🕅

Idea: do not require the user to provide the scale. The optimal one is different for every problem.

Marginalize: the result is a weighted average over a range of σ , weighted by the log-likelihood for the mode.

			[[1]		F111		[0]	[2]	MAGGAG
			[1] a	$+\sigma$	[1] b	$+\sigma$	[2]	[3]	MAGSAC
	(1) F	\Box	0.56	0.52	0.58	0.50	1.01	0.63	0.38
m.	(2) F	n px)	0.28	0.27	0.31	0.31	0.33	0.46	0.30
ial	(4) F	(in	0.53	0.52	0.50	0.50	0.58	0.72	0.47
ent	(5) H	SE	3.39	2.13	3.53	2.19	2.95	1.83	1.37
essential m	(6) H	RMSE	5.42	4.07	4.78	3.55	4.55	5.05	1.76
	(3) E		9.61	9.48	10.62	10.23	10.17	15.56	6.51
E .	(all)		3.30	2.83	3.39	2.88	3.27	4.04	1.80
n n	(1) F	s)	25	25	17	17	17	55	31
ltal	(2) F	(in msecs)	393	394	380	380	380	447	939
ner	(3) F	B	132	140	119	128	126	46	467
fundamental m.,	(4) H	i.	71	72	64	65	65	37	131
jun	(5) H	time	367	369	353	356	355	291	162
	(6) E	.	2 548	2 549	2 535	2 537	2 536	4 637	2 398
H	(all)		589	592	578	581	580	921	688
hy	(1) F		0.06	0.06	0.06	0.06	0.06	0.06	0.00
gral	(2) F	s	0.00	0.00	0.00	0.00	0.00	0.00	0.00
- Sou	(3) F	fails	0.00	0.00	0.00	0.00	0.00	0.00	0.00
homography,	(4) H	% f	0.12	0.12	0.12	0.12	0.12	0.00	0.06
	(5) H		0.57	0.50	0.57	0.43	0.53	0.33	0.29
H	(6) E		0.27	0.22	0.26	0.22	0.24	0.23	0.00
	(all)		0.18	0.15	0.16	0.14	0.16	0.10	0.03
	(all)		0.18	0.15	0.16	0.14	0.16	0.10	0.03

J. Matas IMW & CVPR 2019.06.16

(a) homogr dataset (b) EVD dataset (c) and a complete c

(d) kusvod2 dataset

[1]a – LO-RANSAC

[1]b – LO-MSAC

(c) AdelaideRMF dataset

- [2] LO-RANSAAC
- [3] AC-RANSAC

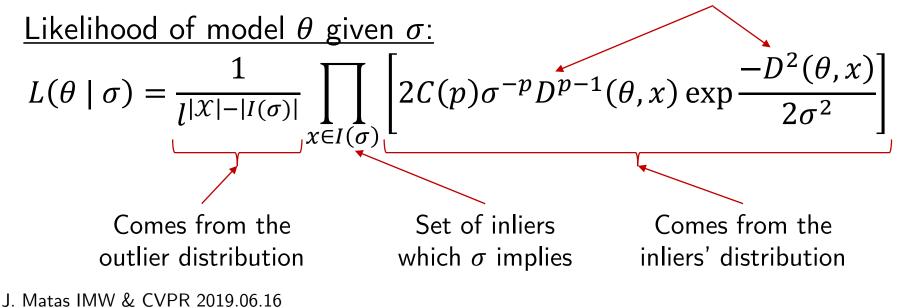
Distribution assumptions:

• Outliers are uniformly distributed ($\sim \mathcal{U}(0, l)$)

Typically, the inlier residuals are calculated as the Euclediandistance from the model in a ρ -dimensional space. Thus,

• the inliers residuals have chi-square distribution

Distance function



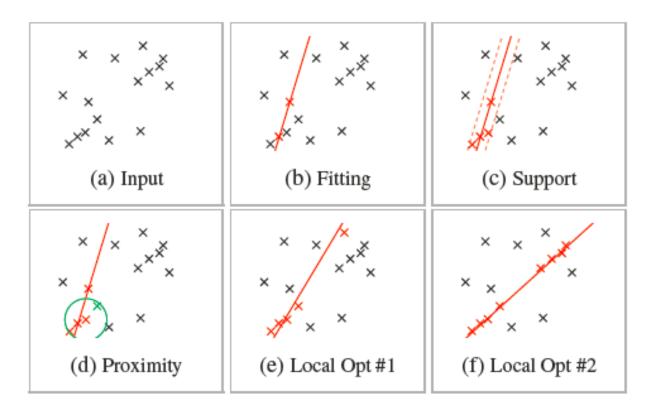


Figure 1: The proposed graph-cut based local optimization converging from a "not-all-inlier" sample, i.e. it is contaminated by an outlier, to the desired model. (a) The input data points, (b) RANSAC-like sampling and model fitting, (c) computation of model support, e.g. counting the inliers, (d) considering spatial proximity by graph-cut, (e-f) iterated local optimization using least-squares fitting and graph-cut. J. Matas IMW & CVPR 2019.06.16

GC RANSAC - Performance

	Confidence 95%										
	RSC	PSC	PSCd	FLO	SPRT	GC	P-NSC				
	1.3 ± 0.0	1.4 ± 0.4	1.6 ± 0.2	0.88 ± 0.3	1.2 ± 0.3	0.8 ± 0.4	0.8 ± 0.2				
\mathcal{T}	0.9 ± 0.2	$\textbf{0.5}\pm0.1$	0.8 ± 0.2	1.6 ± 0.5	1.1 ± 0.15	2.8 ± 0.7	3.1 ± 0.3				
\overline{S}	34.2 ± 1.0	$\textbf{14.8} \pm 1.1$	23.2 ± 6.2	30.3 ± 5.2	69.9 ± 5.7	29.9 ± 9.5	19.1 ± 6.1				
$\overline{\mathcal{E}}$	2.5 ± 2.1	7.9 ± 5.1	9.8 ± 6.7	1.8 ± 1.7	6.5 ± 6.3	0.7 ± 0.2	4.2 ± 2.3				
$\overline{\mathcal{T}}$	7.1 ± 3.9	$\textbf{0.8}\pm0.2$	0.9 ± 0.4	6.2 ± 1.6	5.1 ± 1.7	7.8 ± 1.7	8.1 ± 3.3				
\overline{S}	113.7 ± 65.2	5.6 ± 2.7	$\textbf{4.6} \pm 2.9$	59.6 ± 46.3	229 ± 123	37.8 ± 26.8	69.7 ± 39.6				
E	2.3 ± 0.6	4.3 ± 0.9	3.1 ± 0.9	1.3 ± 1.1	2.4 ± 0.6	0.35 ± 0	2.4 ± 0.6				
\mathcal{T}	17.8 ± 7.9	4.9 ± 2.1	$\textbf{4.6} \pm 1.1$	16.7 ± 5.9	13.2 ± 5.2	18.3 ± 5.5	13.7 ± 5.2				
$\overline{\mathcal{S}}$	39.7 ± 17.2	12.1 ± 5.33	10 ± 2.2	33.5 ± 13	36.6 ± 19.8	33.3 ± 29.5	26.4 ± 13.5				

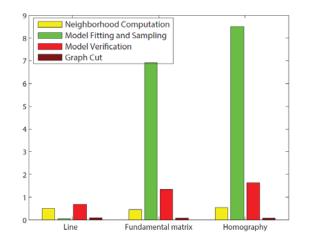
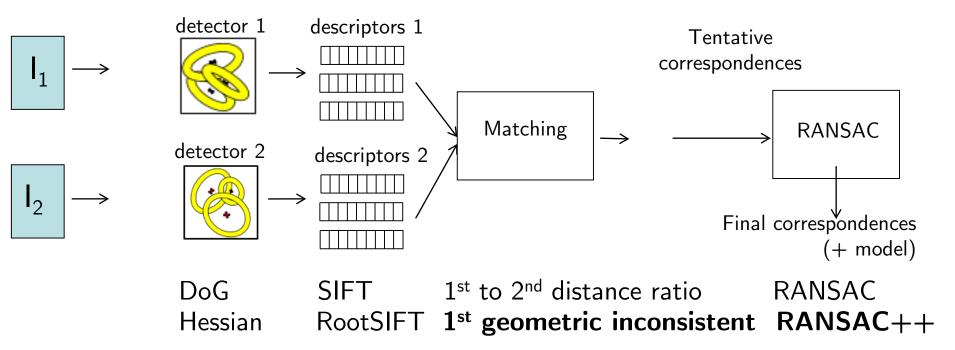


Figure 7: The breakdown of the processing times in milliseconds. Computed as the mean of all tests. *Best viewed in color*.

Is Classical Two-view Pipeline Dead? Dying?



- Learnt descriptors superior: HardNet, ContextDesc; but that does not change the pipeline
- Detection and description learnt together, possibly also the metric for matching: SuperPoint, D2Net have superior results
- RANSAC-like differential methods for end-to-end pipelines:
 - Ranftl and Koltun, Deep Fundamental Matrix Estimation, ECCV 2018
 - Brachmann, PhD thesis, 2018
- J. Matas IMW & CVPR 2019.06.16

D. DeTone, T. Malisiewicz, A. Rabinovich: SuperPoint: Self-Supervised Interest Point Detection and Description. CoRR abs/1712.07629 (2017):

Convolutional neural networks have been shown to be superior to hand-engineered representations on almost all tasks requiring images as input.

The Classical Pipeline: what is the verdict of the Image Matching: Local Features & Beyond CVPR 2019 Workshop Challenge?

We appreciate the collaboration of the organizers. Big thank you goes to: Eduard Trulls <u>trulls@google.com</u> Kwang Moo Yi <u>kyi@uvic.ca</u>

Thanks to the authors of:

- COLMAP who made this type of challenge possible
 - Johannes Schönberger, Jan-Michael Frahm
- Challenge Contributors that provided their results to us
 - Mihai Dusmanu (D2Net)
 - Zixin LUO (ContextDesc)
 - Daniel DeTone (SuperPoint)

Stereo best mAP15: 8% SfM best mAP15: 73% Why? Seems that something is wrong? Plus SfM seems simpler!

[P1] Phototourism dataset – Stereo task

Performance in stereo matching, averaged over all the test sequences.

Click here for a breakdown by sequence

Show 10 • entries						Searc	h:		
		Stereo — a	veraged o	ver all sequ	lences				
Method	\$ Date 🔶	Туре 🌲	#kp \\$	MS 🍦	mAP⁵° ♦	mAP ^{10°} ♦	mAP ^{15°} 🔻	mAP ^{20°} ≑	mAP ^{25°} ♦
SIFT + ContextDesc + Inlier Classification V2 kp:8000, match:custom	19-05-28	F/M	7515.2	0.3633	0.0016	0.0217	0.0823	0.1818	0.2963

[P2] Phototourism dataset – Multi-view task

Performance in SfM reconstruction, averaged over all the test sequences.

- Click here for a breakdown by sequence
- · Click here for a breakdown by subset size

Show 10 • entries Search:								Search:				
				MVS -	averaged	l over all s	equences					
Method 🍦	Date 🖕	Туре 🌲	Ims (%) 🖕	#Pts 🔶	SR 🔶	<u>TL</u> \$	mAP ^{5°} ♦	mAP ^{10°} ♦	mAP ^{15°} 🔻	mAP ^{20°} ♦	mAP ^{25°} ∳	ATE 🔶
SIFT + ContextDesc + Inlier Classification V2 kp:8000, match:custom	19-05-28	F/M	98.6	6126.0	97.5	3.44	0.5755	0.6830	0.7389	0.7750	0.8006	_

Examples of image pairs – nothing super difficult

map5

map10

map15

Examples of image pairs

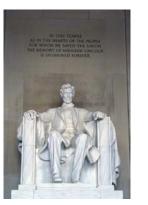
map5

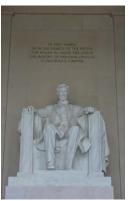
Q

map10

Examples of image pairs

Q map5





map10

map 35

What are the differences in Stereo vs. SfM evaluatin?

Stereo:	features ⇒ matching		OpenCV RANSAC ⇒ pose estimation
SfM:	features ⇔ matching	⇒	COLMAP RANSAC + bundle adjustment ⇒ pose estim.
	Participants	ŀ	Hidden, organizers

Seems that there is a problem with RANSAC or its parameters.

(not visible nor tunable by participants)

Our changes in camera pose estimation in evaluation

Before: normalize keypoints by K and run RansacE (threshold hard to interpret)

```
def normalize_keypoints(keypoints, image_shape, K):
C_x = (image_shape[1] - 1.0) * 0.5
C_y = (image_shape[0] - 1.0) * 0.5
# Correct coordinates using K
C_x += K[0, 2]
C_y += K[1, 2]
f_x = K[0, 0]
f_y = K[1, 1]
keypoints = (keypoints - np.array([[C_x, C_y]])) / np.array([[f_x, f_y]])
```

```
return keypoints
```

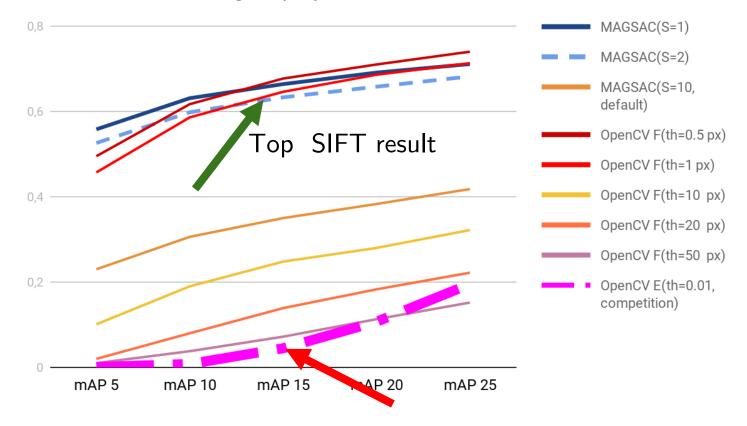
```
• • •
```

```
\begin{split} \mathsf{K} = & [[ \ 866, & 0 \ , \ 505.5 \ ], \\ & [ \ 0 \ , \ 866 \ , \ 379 \ ], \\ & [ \ 0 \ , \ 0 \ , \ 1 \ ]] \\ & \mathsf{det}(\mathsf{K})^{\wedge}(\frac{1}{3}.) = 58 \end{split}
```

def eval_decompose_F():

J. Matas IMW & CVPR 2019.06.16

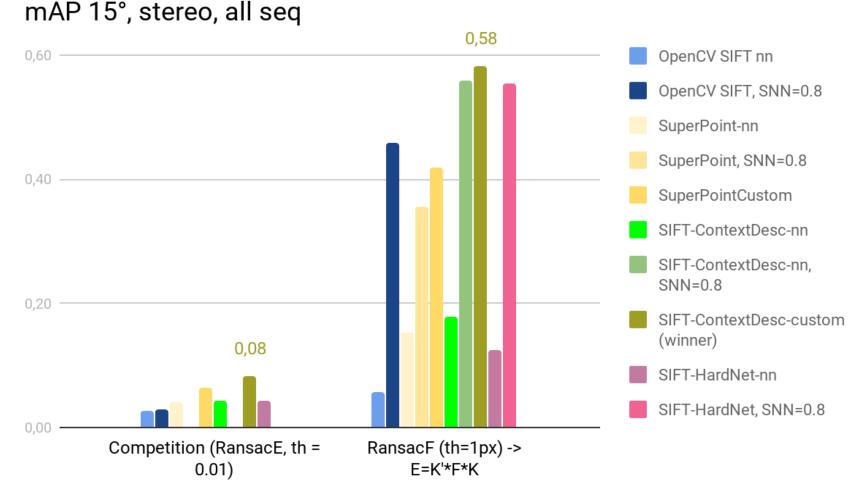
After: run RansacF (threshold in pixels) get E from F by formula E = K' F K Pose precision, recovered by the competition procedure for SIFTs – The OpenCV detector and descriptor



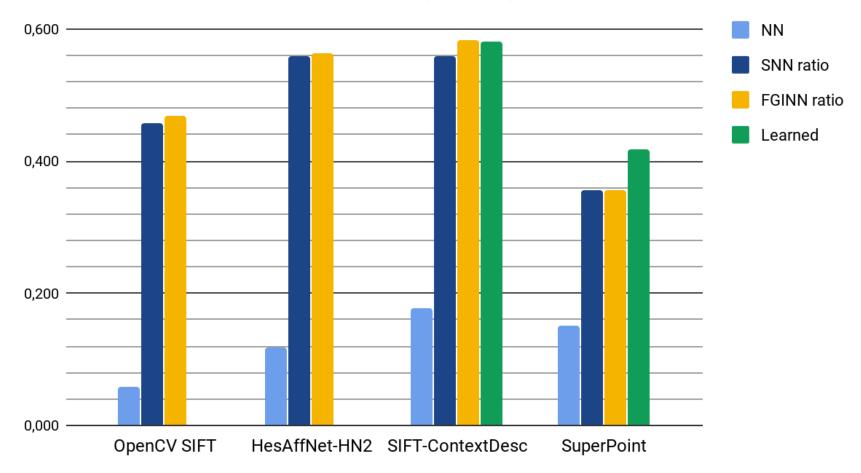
stereo mAP, reichstag seq, OpenCV SIFT feats, SNN = 0.8

- Winner is the same,
- Ratio test is super important

- SIFT > SuperPoint now.
- HardNet is a strong baseline



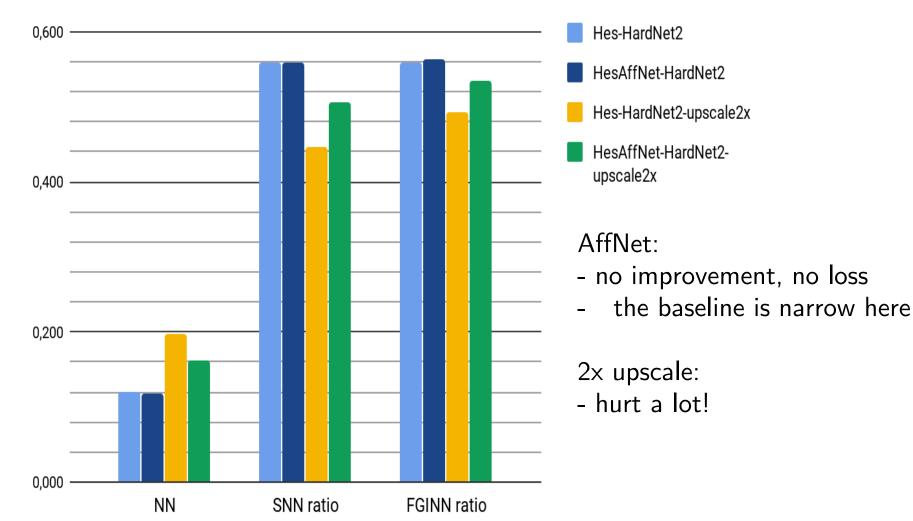
stereo mAP 15, all seqs, RansacF (th=1px)



Learned

Moo Yi, Trulls, Ono, Lepetit, Salzmann, Fua: Learning to Find Good Correspondences, CVPR 2018

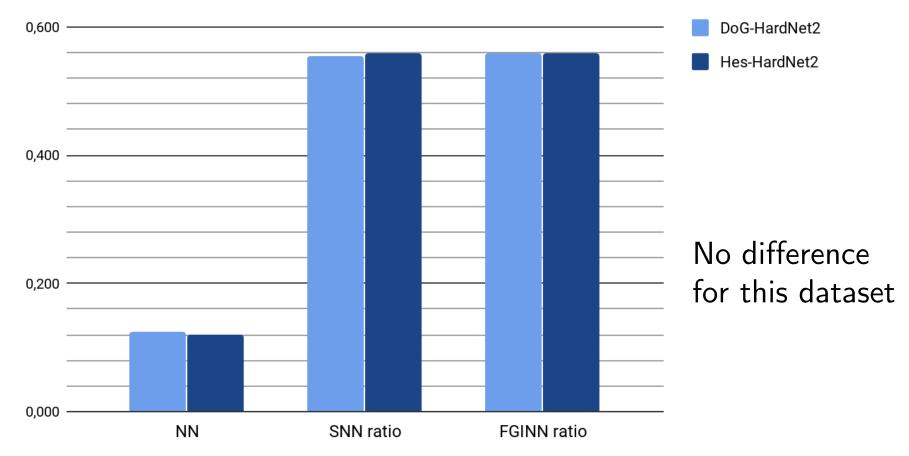
CMP Lessons: Does AffNet help?



stereo mAP 15, all seqs, RansacF (th=1px)

CMP Lessons: Does Hessian vs DoG (SIFT) help?

stereo mAP 15, all seqs, RansacF (th=1px)



AffNet: learning measurement region

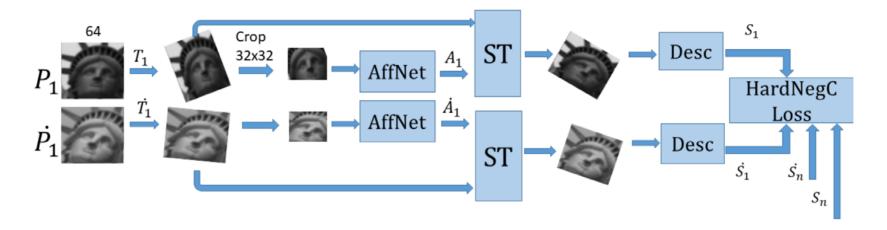
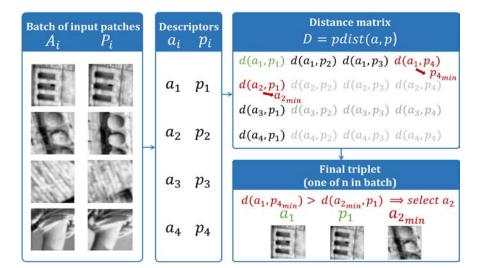


Fig. 5. AffNet training. Corresponding patches undergo random affine transformation T_i , \dot{T}_i , are cropped and fed into AffNet, which outputs affine transformation A_i , \dot{A}_i to an unknown canonical shape. ST – the spatial transformer warps the patch into an estimated canonical shape. The patch is described by a differentiable CNN descriptor. $n \times n$ descriptor distance matrix is calculated and used to form triplets, according to the HardNegC loss.

$$L = \frac{1}{n} \sum_{i=1,n} \max\left(0, 1 + d(s_i, \dot{s}_i) - d(s_i, N)\right), \quad \frac{\partial L}{\partial N} \coloneqq 0,$$

Mishkin et.al. Repeatability Is Not Enough: Learning Affine Regions via Discriminability. ECCV 2018

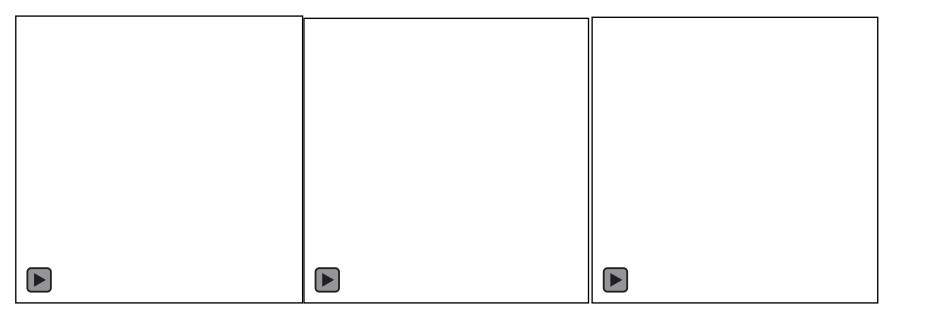
HardNegC loss: treat negative example as constant



$$L = \frac{1}{n} \sum_{i=1,n} \max\left(0, 1 + d(s_i, \dot{s}_i) - d(s_i, N)\right), \quad \frac{\partial I}{\partial N}$$

$$\frac{\partial L}{\partial N} \coloneqq 0,$$

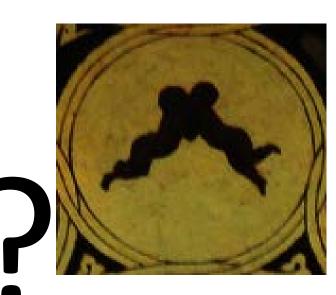
Why HardNegC loss is needed?

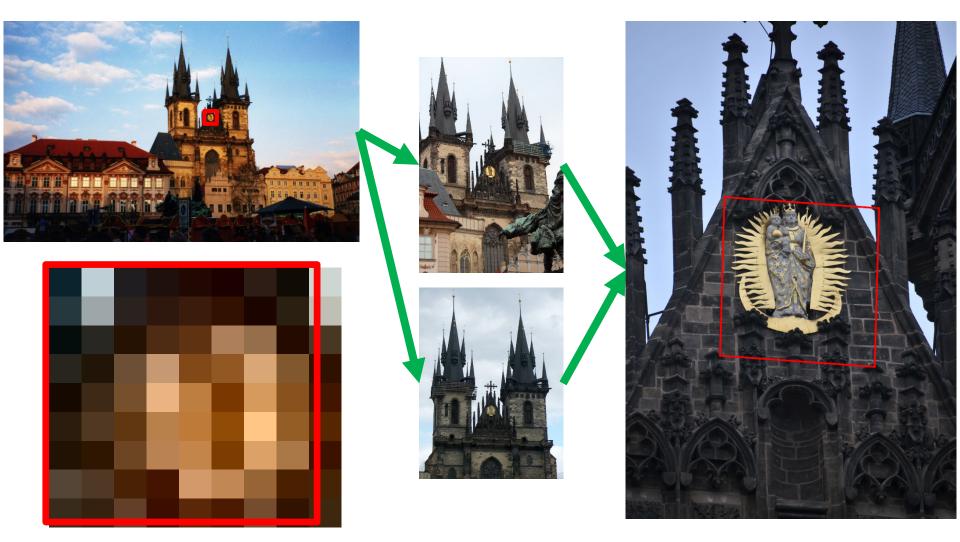


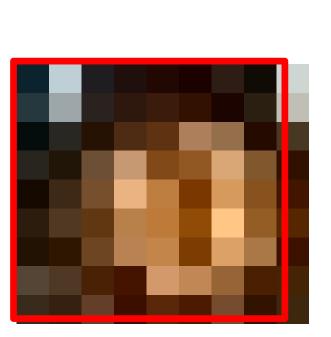
Lessons Learned from the CMP IMW Submission:

- Good and properly set RANSAC is extremely important
- Neither SNN ratio test, nor good RANSAC working on its own
- SNN + good RANSAC is a powerful combination
- FGINN > SNN, use it
- Learning to match gives a moderate boost over SNN
- DoG/Hessian + HardNet + FGINN is very competitive and simple baseline
- AffNet does't harm, potenitally helps for difficult to connect image

The Correspondence Problem -Challenges







For a large viewpoint change (including scale) =>

the wide-baseline stereo problem

Applications:

- pose estimation
- 3D reconstruction
- location recognition

for large viewpoint change (including scale)

=>

the wide-baseline (WBS) stereo problem

for large **illumination change**

=>

wide "illumination-baseline" stereo problem

Applications:

- location recognition
- summarization of image collections

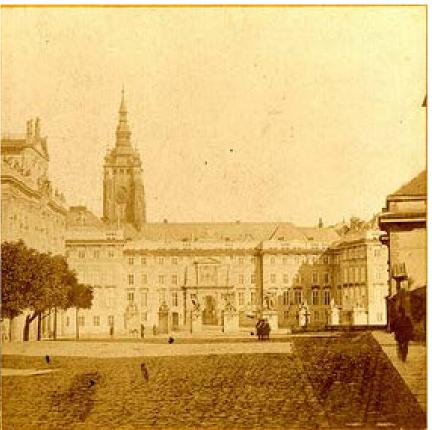
J. Matas IMW & CVPR 2019.06.16

Fernando Zarur - fzarur@gmail.cor

NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

For large **time difference**

=> wide temporal-baseline stereo problem



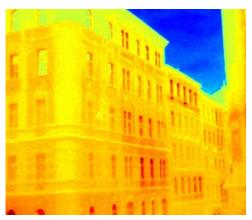
Applications:

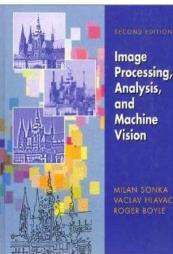
- historical reconstruction
- location recognition
- photographer recognition
- camera type recognition

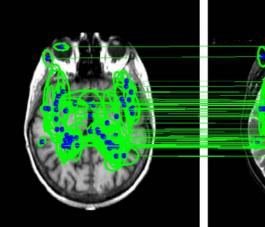
change of modality

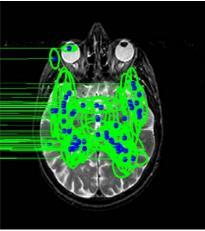
Applications:

- medical imaging
- remote sensing





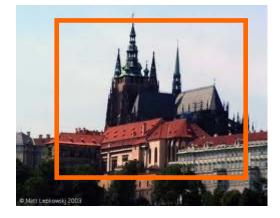


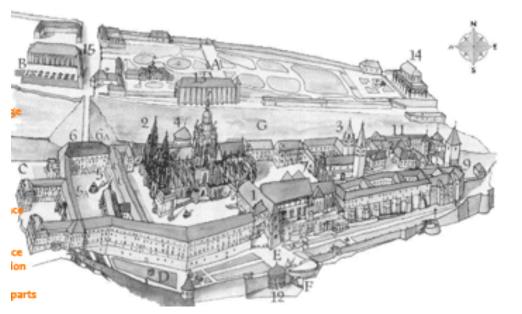


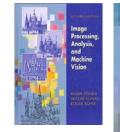
with occlusion "almost everywhere"

"Inprecise" Geometry ③

Retrieving different modalities







Thank you!