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Correspondence in Stereoscopic Images

Correspondence established by the human visual system.

Correspondence by classical narrow-baseline stereo methods,
e.g. Cox 1996

Brewster 
Stereoscope, 1856

A “photo” for 
each eyes
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Given images A and B, find  a geometric model linking them and a 
set of features consistent with the model.
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Correspondence Problems



Given images A and B, find  a geometric model linking them.

Given images A and B, and  a geometric model linking them
(F, E, H),  estimate reliably the confidence that the model is correct.

If images A and B are geometrically unrelated, establish fast and 
with high confidence this fact.

Given a set of  n images Ai, select a subset of pairs  that are 
geometrically related much faster then in time proportional to n2.

(Registration) Given images A and B and an approximation of the 
geometric model linking them (F, E, H), find the highest precision 
model.
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Correspondence Problems



Widening of the baseline, zooming in/out, rotation  

Wide Baseline Stereo (WBS), circa 2000

Standard approach:

D. Lowe, 2000, SIFT

Also:
Mikolajczyk &  Schmid,
Tuytelaars & van Gool,
Matas et al. and many 
other
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Classical Two-view Correspondence Pipeline

descriptors 1

descriptors 2

I1

I2

Matching RANSAC

Tentative
correspondences

Final correspondences
(+ model)

detector 1

detector 2
Correspondence

verification

Im
age Synthesis

Guided matching

Morel, Yu: ASIFT: A New Framework for Fully Affine Invariant Image Comparison. SIAM JIS 2009
Mishkin, MODS: Fast and robust method for two-view matching. CVIU 2015
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Schaffalitzky,Zissermann
BMVC 98



● Difficult matching problems:
– Rich 3D structure with many occlusions
– Small overlap
– Image quality and noise
– (Repetitive patterns)

Correspondence Verification

measurement region too large measurement region too small

?
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● high discriminability 
– significantly outperforms a standard selection process based SIFT-ratio

● very fast (0.5 sec / 1000 correspondences)
● always applicable before RANSAC
● the process generating tentative correspondences can be much more 

permissive
– 99% of outliers not a problem, correct correspondences recovered
– higher number of correct correspondences

Correspondence Verification by Co-segmentation
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Classical Two-view Correspondence Pipeline

descriptors 1

descriptors 2

I1

I2

Matching RANSAC

Tentative
correspondences

Final correspondences
(+ model)

detector 1

detector 2

DoG SIFT        1st to 2nd distance ratio        RANSAC
Hessian      RootSIFT 1st geometric inconsistent  RANSAC++

1st Geometricly Inconsistent Constraint
[Mishkin et al., Two-View Matching with View 
Synthesis Revisited. IVCNZ 2013]
(rediscovered: in [Sarlin et.al, CVPR 2019)

similar constraints used for training descriptors: 
SuperPoint (CVPRW 2018), D2Net (CVPR 
2019), RFNet (arXiv 2019, called “neighbor
mask”) 
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MAGSAC (Barath et al., CVPR 2019, Poster 3-1.158)

Idea: do not require the user to provide the scale.
The optimal one is different for every problem.

Marginalize: the result is a weighted average over a 
range of σ, weighted by the log-likelihood for the mode.      

[1]a – LO-RANSAC

[1]b – LO-MSAC

[2] – LO-RANSAAC

[3]  – AC-RANSAC
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Data interpretation and model likelihood

Distribution assumptions:
● Outliers are uniformly distributed (~𝒰𝒰 0, 𝑙𝑙 )

Typically, the inlier residuals are calculated as the Eucledian-
distance from the model in a 𝜌𝜌-dimensional space. Thus, 
● the inliers residuals have chi-square distribution

Likelihood of model 𝜃𝜃 given 𝜎𝜎: 

𝐿𝐿 𝜃𝜃 | 𝜎𝜎 =
1

𝑙𝑙 𝒳𝒳 − 𝐼𝐼(𝜎𝜎) �
𝑥𝑥∈𝐼𝐼 𝜎𝜎

2𝐶𝐶 𝑝𝑝 𝜎𝜎−𝑝𝑝𝐷𝐷𝑝𝑝−1 𝜃𝜃, 𝑥𝑥 exp
−𝐷𝐷2 𝜃𝜃, 𝑥𝑥

2𝜎𝜎2

Comes from the
outlier distribution

Set of inliers
which 𝜎𝜎 implies

Comes from the
inliers’ distribution

Distance function
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GC-RANSAC [Barath and Matas, CVPR 2018]
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GC RANSAC - Performance

J. Matas IMW & CVPR 2019.06.16



DoG SIFT        1st to 2nd distance ratio        RANSAC
Hessian      RootSIFT 1st geometric inconsistent  RANSAC++

Is Classical Two-view Pipeline Dead? Dying?

descriptors 1

descriptors 2

I1

I2

Matching RANSAC

Tentative
correspondences

Final correspondences
(+ model)

detector 1

detector 2

• Learnt descriptors superior: HardNet, ContextDesc; but that does not change the 
pipeline

• Detection and description learnt together, possibly also the metric for matching: 
SuperPoint, D2Net have superior results  

• RANSAC-like differential methods for  end-to-end pipelines:
• Ranftl and  Koltun, Deep Fundamental Matrix Estimation, ECCV 2018
• Brachmann, PhD thesis, 2018
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Classical Two-view Pipeline Dying?

D. DeTone, T. Malisiewicz, A. Rabinovich:
SuperPoint: Self-Supervised Interest Point Detection and 
Description. CoRR abs/1712.07629 (2017):

Convolutional neural networks have been shown to be
superior to hand-engineered representations on almost all
tasks requiring images as input.
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The Classical Pipeline: what is the verdict of the Image Matching: 
Local Features & Beyond CVPR 2019 Workshop Challenge?

We appreciate the collaboration of the organizers.
Big thank you goes  to:
Eduard Trulls trulls@google.com
Kwang Moo Yi kyi@uvic.ca

Thanks to the authors of:
● COLMAP who made this type of challenge possible

– Johannes Schönberger, Jan-Michael Frahm
● Challenge Contributors that provided their results to us

– Mihai Dusmanu (D2Net)
– Zixin LUO (ContextDesc)
– Daniel DeTone (SuperPoint)
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17/40

Stereo best mAP15:   8%
SfM best mAP15: 73%
Why? Seems that something is wrong? Plus SfM seems simpler!
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Examples of image pairs – nothing super difficult
Q map5 map10 map15 map 25
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Examples of image pairs
Q map5 map10 map15 map 25
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Examples of image pairs
Q            map5 map10 map 35
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What are the differences in  Stereo vs. SfM evaluatin?

Stereo: features ⇨ matching ⇨ OpenCV RANSAC ⇨ pose estimation

SfM: features ⇨ matching ⇨ COLMAP RANSAC + bundle adjustment ⇨ pose estim. 

Seems that there is a problem with RANSAC or its parameters.

(not visible nor tunable by participants)

Participants Hidden, organizers
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Our changes in camera pose estimation in evaluation
Before: normalize keypoints by K
and run 
RansacE (threshold hard to interpret)

After: run RansacF (threshold in pixels)
get E from F by formula E = K’ F K

K =[[ 866,   0 ,  505.5  ],
[   0  , 866  ,  379 ],
[   0  ,   0   ,    1    ]]

det(K)^(⅓.) = 58
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Pose precision, recovered by the competition procedure for SIFTs –
The OpenCV detector and descriptor

Top SIFT result

J. Matas IMW & CVPR 2019.06.16



● Winner is the same, 
● Ratio test is super important

Re-evaluated results: everyone benefits 
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● SIFT > SuperPoint now.
● HardNet is a strong baseline
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SNN vs FGINN vs learned matcher

Learned
Moo Yi, Trulls, Ono, Lepetit, Salzmann, Fua:
Learning to Find Good Correspondences, CVPR 2018
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CMP Lessons: Does AffNet help?

AffNet:
- no improvement, no loss
- the baseline is narrow here

2x upscale: 
- hurt a lot!
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No difference 
for this dataset

CMP Lessons: Does Hessian vs DoG (SIFT) help?
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AffNet: learning measurement region

Mishkin et.al. Repeatability Is Not Enough: Learning Affine Regions via Discriminability. 
ECCV 2018
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HardNegC loss: treat negative example as constant
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Why HardNegC loss is needed? 
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Lessons Learned from the CMP IMW  Submission:

● Good and properly set RANSAC is extremely important

● Neither SNN ratio test, nor good RANSAC working on its own
● SNN + good RANSAC is a powerful combination

● FGINN > SNN, use it 
● Learning to match gives a moderate boost over SNN
● DoG/Hessian + HardNet + FGINN is very competitive and simple baseline

● AffNet does’t harm, potenitally helps for difficult to connect image
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The Correspondence Problem -
Challenges
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Matching in the context of other images

?
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Matching in the context of other images

J. Matas IMW & CVPR 2019.06.16



Matching in the context of other images
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Finding correspondences

For a  large viewpoint
change (including scale)
=>
the wide-baseline
stereo problem

Applications:
- pose estimation
- 3D reconstruction
- location recognition
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Finding correspondences

for large viewpoint change
(including scale)
=>
the wide-baseline (WBS)
stereo problem
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Finding correspondences

for large 
illumination change 
=>
wide “illumination-baseline”
stereo problem

Applications:
- location recognition
- summarization of image

collections
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NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely

Find the matches (look for tiny colored squares…)
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Finding correspondences

For  large 
time difference
=>
wide temporal-baseline
stereo problem

Applications:
- historical reconstruction
- location recognition
- photographer recognition
- camera type recognition
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Finding Correspondences

change of modality

Applications:
- medical imaging
- remote sensing
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with occlusion “almost everywhere”
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“Inprecise” Geometry 
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Retrieving different modalities
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Thank you!
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