

Phototourism Challenge Results

Summary

- 24 submissions + 26 baselines
 - Includes multiple settings (# keypoints, matching strategies)
 - Up to 8000 keypoints per image, broken down into categories by # of keypoints
 - Anonymous submissions allowed (and encouraged)

- All submissions processed for both tasks
 - We receive features and do the heavy lifting
 - Test set remains private

Improving with descriptors (stereo task)

Stereo task: Descriptors with DoG keypoints

Improving with descriptors (multi-view task)

Multi-view task: Descriptors with DoG keypoints

Improving with matching (stereo task)

Stereo task: using different matchers

SuperPoint: Self-Supervised Interest Point Detection and Description. DeTone et al., 2018. ContextDesc: Local Descriptor Augmentation with Cross-Modality Context. Luo et al., CVPR'19 Learning to Find Good Correspondences. Yi et al., CVPR'18

Improving with matching (multi-view task)

Multi-view task: using different matchers

SuperPoint: Self-Supervised Interest Point Detection and Description. DeTone et al., 2018. ContextDesc: Local Descriptor Augmentation with Cross-Modality Context. Luo et al., CVPR'19 Learning to Find Good Correspondences. Yi et al., CVPR'18

Stereo task: E2E learned features (2k points)

SuperPoint: Self-Supervised Interest Point Detection and Description. DeTone et al., 2018. D2-Net: A Trainable CNN for Joint Detection and Description of Local Features. Dusmanu et al., CVPR'19

Multi-view task: E2E learned features (2k points)

SuperPoint: Self-Supervised Interest Point Detection and Description. DeTone et al., 2018. D2-Net: A Trainable CNN for Joint Detection and Description of Local Features. Dusmanu et al., CVPR'19

Stereo task: E2E learned features (up to 8k points)

SuperPoint: Self-Supervised Interest Point Detection and Description. DeTone et al., 2018. D2-Net: A Trainable CNN for Joint Detection and Description of Local Features. Dusmanu et al., CVPR'19

Multi-view task: E2E learned features (up to 8k points)

SuperPoint: Self-Supervised Interest Point Detection and Description. DeTone et al., 2018. D2-Net: A Trainable CNN for Joint Detection and Description of Local Features. Dusmanu et al., CVPR'19

mAP at 15 degrees, per sequence

Source: https://image-matching-workshop.github.io/leaderboard

Source: https://image-matching-workshop.github.io/leaderboard

Sequence

Inconsistent ranks! #5 :HarrisZ+RsGLOH2 (<u>link</u>) / #7: AKAZE

SIFT + ContextDesc [kp:8000; match::n]
SIFT + ContextDesc [kp:8000; match::n]
SIFT-Dense-ContextDesc [kp:8000; match...
Avg
Avg

SILDa Challenge results

Matching Scores: Results

Method Name	Matching Score 0.1	# inliners 0.1
Hessian-HardNet2	36.41	52.28
HesAffNet-HardNet2	36.43	60.10
mkdnet-PT	31.57	40.61
mkdnet-SILDa	23.31	45.22
ELF-SIFT	28.23	5.23
ELF-SIFT51	27.20	10.75
SOSNet	37.12	39.05
BRISK	29.39	42.24

Epipolar Arc Distance Statistics: Results

Method Name	mean dist. to ep. arc	median dist. to ep. arc
Hessian-HardNet2	0.12	0.05
HesAffNet-HardNet2	0.17	0.08
mkdnet-PT	0.18	0.10
mkdnet-SILDa	0.26	0.17
ELF-SIFT	0.23	0.13
ELF-SIFT51	0.25	0.15
SOSNet	0.18	0.09
BRISK	0.26	0.18

Number of image pairs with more than 8 inliers: Results

Method Name	% image pairs
Hessian-HardNet2	38.71
HesAffNet-HardNet2	55.00
mkdnet-PT	49.25
mkdnet-SILDa	91.63
ELF-SIFT	20.44
ELF-SIFT51	28.71
SOSNet	53.38
BRISK	77.80

Lessons learned

- Matching scores != camera pose
- Stereo ~= Multi-view
 - Still important (e.g. SIFT vs D2-Net)
- Matching seems very important
 - Even for bundle adjustment!

Future improvements

- Dense baselines (and submissions)
- Open-source everything
- Validation set for fast iteration
- More visualizations (matches, poses, point clouds)
- More tasks
 - Patch matching: is it a good proxy? How can we make it better?
 - Re-localization: is it feasible/desirable? (large-scale, requires finer tuning, etc)
 - Ground-to-aerial matching

Future improvements

- Dense baselines (and submissions)
- Open-source everything
- Validation set for fast iteration
- More visualizations (matches, poses, point clouds)
- More tasks
 - Patch matching: is it a good proxy? How can we make it better?
 - Re-localization: is it feasible/desirable? (large-scale, requires finer tuning, etc)
 - Ground-to-aerial matching

Challenge in the training loop

- More images would surely give improved results compared to when using only a subset
- Our challenge gt is not perfect ground truth, but provides "at least better" poses.
- We can bootstrap to keep on improving

The progressive "challenge"

- Current "ground truth" is limited
 - Based on SIFT, RANSAC, and Bundle Adjustment
 - \circ $\hfill \hfill \hf$
 - \circ $\hfill We see the "ground truth poses" as a "higher bound"$
- We can bootstrap to keep on improving
 - Can we build better models with better features and matchers?
 - What happens with this new "ground truth"?

The evolving "challenge"

- Current "ground truth" is limited
 - Based on SIFT, RANSAC, and Bundle Adjustment

- Core assumption: "SfM with more images provide better pose"
 - \circ $\hfill We see the "ground truth poses" as a "higher bound"$

• "Ground truth" evolves along features and matchers

Closing ceremony

Winner of the Phototourism challenge:

- Stereo track: Dawei Sun, Zixin Luo, Jiahui Zhang
- Multi-view track: Dawei Sun, Zixin Luo, Jiahui Zhang

PRIZES SPONSORED BY:

Closing ceremony

Winners of the SILDa challenge:

Milan Pultar, Dmytro Mishkin, Jiří Matas, Visual Recognition Group, Dept. of Cybernetics, Faculty of Electrical Engineering, CTU in Prague

PRIZE SPONSORED BY:

