Detecting and Suppressing Marine Snow for Underwater Visual SLAM
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Abstract

Conventional SLAM methods which work very well in
typical above-water situations, are based on detecting key-
points that are tracked between images, from which ego-
motion and the 3D structure of the scene are estimated.
However, in underwater environments with marine snow
— small particles of organic matter which are carried by
ocean currents throughout the water column — keypoint de-
tectors are prone to detect the marine snow particles. As the
vast majority of SLAM front ends are sensitive against out-
liers, and the marine snow acts as severe “motion noise”,
failure of the regular egomotion and 3D structure estima-
tion is expected. For this reason, we investigate the struc-
ture and appearance of marine snow and developed two
schemes which classify keypoints into “marine snow” or
“clean” based on either the image patches obtained from
usual keypoint detectors or the descriptors computed from
these patches. This way the subsequent SLAM pipeline is
protected against 'false’ keypoints. We quantitatively eval-
uate the performance of our marine snow classifier on both
real underwater video scenes as well as on simulated under-
water footage that contains marine snow. These simulated
image sequences have been created by extracting real ma-
rine snow elements from real underwater footage, and sub-
sequently overlaying these on “clean” underwater videos.
Qualitative evaluation is also done on a night-time road se-
quence with snowfall to demonstrate applicability in other
areas of autonomy. We furthermore evaluate the perfor-
mance and the effect of marine snow detection & suppres-
sion by integrating the snow suppression module in a full
SLAM pipeline based on the pySLAM system.

1. Introduction

When applied to underwater scenarios, Visual Odome-
try and Simultanous Localisation And Mapping (SLAM)
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Figure 1. In our approach, we extract marine snow from under-
water footage with untextured background (top), and superimpose
this snow on arbitrary footage to create labelled training data (bot-
tom images) for training snowflake detectors .

face numerous challenges which appear significantly less
frequently in regular above-water applications. Such chal-
lenges are e.g. moving illumination and the reduced zone of
usable image landmarks, limited by the illumination cone
and the achievable depth of field in a low illumination, tur-
bid environment. Marine snow, the challenge in focus in
this paper, describes particles present throughout the wa-
ter column, ranging from millimeter scale up to decimeter
scale [1]. As its name suggests, marine snow can have the
appearance of snowfall; its movement is heavily influenced
by ocean currents, and under illumination it fills its sur-
roundings with bright white spots. This combination of dy-
namic motion and an appearance which contrasts with most
backgrounds makes the snowflakes salient for keypoint de-



tectors and constitutes a significant source of motion noise.
Thus, keypoint-based SLAM runs a significant risk of pro-
ducing wrong egomotion estimates or even tracking failure
if the number of snowflakes detected, and thus the outlier
rate, becomes too high. Of course, this issue also exists for
perception in case of heavy snowfall in autonomous driving.

In this paper, we present our approach to mitigate the
effect of marine snow by developing two machine-learning
systems to filter false’ keypoints. The main contributions
of this paper are:

* We developed two efficient classifiers for marine snow,
P-CLAS and D-CLAS; they are designed to run in
piggy-back mode on top of arbitrary keypoint detec-
tors — this is done to limit processing to image ar-
eas which are actually candidates for being regarded as
keypoints. While classifier P-CLAS works on the im-
age area around the detected keypoint, the second clas-
sifier, D-CLAS, works on the binary keypoint descrip-
tors provided by the ORB [ 18] detector/descriptor.

* We investigate how the descriptor-based classifier D-
CLAS (which is computationally ’cheaper’ than the
one working on image patches) compares in perfor-
mance to the patch classifier P-CLAS. This compar-
ison is done both on a large image dataset as well as
for the case of being integrated into a SLAM pipeline.

* We provide a method to extract snow and marine snow
from images with essentially untextured backgrounds.
We have considerable underwater footage with this
characteristic, and thus could collect a huge set of
"ground truth’ marine snow examples. The resulting
’snowflake dataset’ is used by us for superimposing
marine snow on ’clean’ images or video sequences. It
is publicly available', and to our knowledge it is the
first of its kind.

* We extend an existing underwater pose-estimation
dataset (VAROS [20]) with superimposed marine snow
to provide a new benchmark with marine snow motion
noise, and accurate ground-truth values.

* We test our method on an above-water snowy se-
quence, and demonstrate that with further fine-tuning
our results should be transferable to the above-water
domain.

2. Related Work

Marine snow mitigation for computer vision tasks is a
relatively recent research topic. Early methods aimed at a
more broad form of image enhancement modelled marine
snow as a simple form of additive noise, however, more

lhttps://www.ntnu.edu/arosvisionqroup/varos

recent methods aimed specifically at marine snow point
out the weaknesses of this approach, like its disregard of
properties such as water absorption, size, shape, and back-
scattering [4].

Most methods pursue marine snow removal in the inter-
est of improving object detection pipelines, and therefore
detect snow in the entire image. A family of filter-based
approaches for marine snow detection and removal can be
traced back to the work of Banerjee et al. [2]. It presents
a basic approach which does snow removal using median
filtering and implicit snow detection based on the lumi-
nance channel of a YCbCr (luminance, blue-difference, red-
difference) image-representation. The image is traversed
with a 7x7 window, and locations which have a high lu-
minance center and high luminance variance are selected
for marine snow removal. There exists an extension of this
method with multi-scale filters to address particles of vary-
ing size, however further details are not given [17].

From Farhadifard et al. [7], we find another multi-scale
approach, which like earlier filter-based methods uses the
dissimilarity of the moving window center value to the win-
dow mean as a selection metric. To identify additional out-
liers within a patch, the patch is represented in RGB color-
space, and an outlier detection step selects all pixels which
are closer to the pixel-center than a threshold based on a
weighted standard-deviation value. As a final criteria, high-
saturation patches are considered false detections, and con-
sequently removed due to the typically grayscale appear-
ance of marine snow.

The paper [6] highlights and addresses one shared short-
coming of the aforementioned methods, namely their im-
plicit dismissal of the temporal information present in video
sequences. Allegedly, this is the first spatio-temporal ma-
rine snow removal method. From three input frames, the
method detects and removes snow in the center frame.

In a 2021 paper, Sato et al. [19] state that they are un-
aware of any deep learning based marine snow removal
methods. However, neural networks have been used in an
intermediate marine snow detection step before filter-based
removal [12]. This method considers the temporal nature
of marine snow by utilising 3D neural networks. Their ar-
chitecture first detects snow using a combination of 3D and
2D convolutions, before using adaptive median filtering to
remove the snow.

In another paper [14], the authors do multi-scale detec-
tion and removal of above water snow. Their system is di-
vided into three main parts. First, feature maps are calcu-
lated at three different scales using a multi-scale Convolu-
tional Neural Network (CNN). Next, the feature maps are
concatenated and fed through the snow detection module—
a 40-layer modified DenseNet. Finally, to remove the snow,
the output from the snow detection module is concatenated
with the feature maps from the multi-scale CNN and passed



through yet another densely connected CNN.

With our focus on keypoint classification, perform-
ing snow-detection on the full image entails a significant
amount of unnecessary computation. A more efficient ap-
proach is to only focus on those specific points which are
used by the affected SLAM pipeline, i.e. the keypoints given
by its keypoint detector. Keypoint rejection of stand-alone
keypoints is somewhat rare, as most outlier rejection meth-
ods are based on a set of matched keypoints from a pair
of images. For example, the seminal paper [8] introduces
RANSAC, an outlier rejection method which creates mo-
tion hypotheses from different subsets of the keypoint cor-
respondences, and tests these estimates against the remain-
ing data.

However, waiting until the matching step is complete
wastes resources on matching keypoints which should be
removed either way. Therefore, rejecting keypoints as soon
as possible, or not detecting them at all should be the pre-
ferred method. The workshop paper [9] uses random for-
est classifiers to predict the suitability of the keypoints for
matching, thereby implicitly evaluating keypoints for pose-
estimation. Their implementation uses a random forest with
25 decision trees with a maximum tree depth of 25. Impor-
tantly, their method classifies on the keypoint descriptors,
meaning there is no additional cost related to feature ex-
traction before classification. In scenes with high amounts
of foliage or dynamic objects their method removed 70% of
the keypoints while retaining 60% of the matches.

The conference paper [10], uses a Support Vector Ma-
chine (SVM) to predict the suitability of an image region
for image retrieval in geo-localization. To increase the dis-
criminative power of the input, they perform classification
based on bundles of descriptors retrieved from the same lo-
cal image region.

Another paper [13] does keypoint rejection in underwa-
ter images for lighting artefacts and dynamic phenomena,
such as fishes and caustics, as well as marine snow. They
take a 257 x 257 image patch around each keypoint and
scale them down to 65 x 65. Each patch is classified by
a CNN as either suitable or unsuitable for tracking. Their
architecture consists of a shallow network with three con-
volutional layers with ReLU and maxpooling, followed by
a fully connected layer and a soft-max layer. Training
is supervised, with manually labelled images from other
datasets. The proposed real time plug-and-play keypoint
rejection system has been verified by comparing drift accu-
mulated by ORB-SLAM [16] and DynaSLAM [3],a SLAM
system which accounts for dynamic environments.

3. The ANN-based Approaches to Snow Clas-
sification

We created two neural networks for snow classification
of keypoints, P-CLAS which extracts image patches from

Layer L1 L2 L3 14 L5 Le L7

Activation ReLu

| Sigmoid

Dimensionality | 256 196 196 128 64 16 1

Table 1. Neural Network architecture for the descriptor classifier

D-CLAS

Layer L1 L2 L3 L4 L5 L6
Layer type CNN w/ 3x3 filters Dense
Activation ReLu Sigmoid
Input Depth 9 32 64 64 64 256
Input Height/Width | 64 32 16 8 4 N/A

Table 2. Neural Network architecture for the image-patch classi-
fier P-CLAS

keypoints based on their coordinates such that it can be used
with any keypoint-based pipeline, and D-CLAS with de-
scriptors as input, meaning it must be trained for the partic-
ular descriptor it is to be combined with. Common to both
methods is the Sigmoid activation function in their last layer
which makes the final output a pseudo-probability estimate
for membership of the positive (snow) class.

D-CLAS was designed for ORB-descriptors with a Fully
Connected Neural Network (FCNN) architecture (cf. Table
D).

P-CLAS is structured as a multi-scale CNN + FCNN
architecture (cf. Table 2). The multi-scale input allows
the classifier to discriminate marine snow of different sizes,
which is significant because marine snow can vary from a
few pixels to 50 x 50 image regions which can contain mul-
tiple undesirable keypoints. With keypoint coordinates as
input, we extract patches at three scales ([64 x 64, 48 x 48,
32 x 32]) and, using bilinear interpolation, rescale and sub-
sequently stack them to create a 9 x 64 x 64 input. The net-
work has 5 layers with ReLU, BatchNorm, and maxpooling,
and a 6th dense layer with 1 neuron.

Both networks were trained with the Adam optimizer
[11]. During training, we frequently validate on the vali-
dation splits of the datasets. The models with the highest
F2-score in validation were saved for further evaluation.

4. Datasets

We developed our own datasets for training and evalua-
tion. We first collected underwater sequences in which all
features are either suitable for SLAM, or all features are
marine snow. This means sequences near the ocean floor
with no visible marine snow, and sequences distant from
both the ocean surface and the ocean floor, in which only
marine snow is visible and nothing else. Such sequences
circumvent the need to manually label marine snow, which
can easily amount to thousands of samples per frame.

With these images, we generate four datasets with full



HD images and keypoints and descriptors labeled as ’snow”
and “clean”. The first Unmodified (U) dataset uses the im-
ages as-is to detect keypoints and store their coordinates
and descriptors. However, the U dataset has some notable
caveats. First and foremost, the presence of marine snow
can easily be determined by the colour and texture of the im-
age, since all images of marine snow inevitably come with
a background with various shades of blue. Conveniently,
we can use these untextured backgrounds to reliably extract
marine snow and superimposing it onto more varied back-
grounds, using a weighted sum (alpha-keying). With the
extracted snow, we create three datasets named Underwa-
ter (UW), Overwater (OW), and Snowy-VAROS. These are
discussed later in this section.

To extract snow, we use a strided window approach with
stride 10. In each 60 x 60 window, P, we calculate the
Euclidean RGB-distance, D, of each individual pixel value
at location p € P to the median colour Mp of the win-
dow. As indicated in Egs. (1) and (2), these distances are
scaled by the inverse maximum distance to create a pixel-
wise weighting between O and 1. The weight, W), is set to
0if D(Mp,p) is below a threshold value 7p = 30, or if the
grayscale intensity of p, I¢s(p), is below 77 = 20.

0 if Igs(p> <Tr
0 if D(Mp,p) < 7p
Wy={  D(Mp,p) . (1)
otherwise.

max D(Mp, q)
q

where
D(p,q) = |I(p) — I(q)|- (2)

For each pixel, the average weight across all windows is
used when extracting snow. This is to ensure that windows
with large marine snow particles which shift the median
colour away from the background colour do not introduce
unwanted artefacts when superimposing the snow. With a
background image B, alpha-key weight W, and snowy im-
age S, we superimpose images according to Equation 3:

I=Bo(1-W)+SoW. 3)

After extracting snow from the snowy images in the U
dataset, we create the three other datasets. The Underwa-
ter (UW) dataset superimposes the extracted snow onto the
remaining images in U which are free from snow. The
Overwater (OW) dataset uses above-water images from the
Exclusively Dark Images Dataset (ExDark) [15] as back-
grounds for superimposing to introduce more variation in
the background images. Images in the ExDark dataset
which featured rain, starry skies, or snowfall were removed
because of their exceptional similarities to marine snow.

Finally, to demonstrate the flexibility of our superimpos-
ing approach we use it to add a video sequence of snow

Snowless sequences

Snow
proximity
filtering

Clean
Keypoints

Extracted Snow

‘ariance-
based
Visibility

Superimposed
SNOW sequence

Image for

R descriptors

Figure 2. Data generation pipeline with superimposed snowy se-
quences

Figure 3. Snow superimposed on the VAROS dataset

to the synthetic underwater benchmarking dataset VAROS
[20]. This has the benefit of a known camera matrix and
ground-truth pose. By superimposing snow from a video se-
quence, we ensure that the motion of the snow is consistent
between frames. A sample frame from this Snowy-VAROS
sequence is seen in Figure 3.

To create keypoint coordinates and descriptors for train-
ing, we perform keypoint detection separately on the back-
ground image, and extracted snow image, as opposed to de-
tecting keypoints on the combined, superimposed image.
This was done primarily to increase the number of key-
points on marine snow, and because it makes for a more
difficult dataset in which some of the detected snow is less
visible than normal. Figure 2 presents the pipeline used to
generate keypoints for the datasets from a three-tuple of ex-
tracted snow, background, and their combined image. A
challenge of this approach is that snow can be superim-
posed either over a good keypoint in the background image
or in an image region where the snow is not visible, mean-
ing keypoints can become mis-labeled in the combined im-
age. Consequently, a keypoint, K, detected on the ex-
tracted snow is rejected if inequality 4 is not true, where



Images Snow KPs Background KPs
Unmodified | 6,008 598,931 1,181,570
Underwater | 10,051 1,525,556 2,227,102
Overwater | 8,705 1,772,123 2,055,001
Total 24,764 3,896,610 5,463,673

Table 3. Datasets and their sizes. Train, val and test splits were
made following the 80/10/10 convention

Pg;, and Pp¢ are image patches of K in the superimposed
image and background image, respectively, and £ = 14 is
an empirically selected threshold.

Var [Ps;] > Var [Ppg| + & )

Secondly, to verify that keypoints detected on the back-
ground image can not be perceived as mis-labelled after su-
perimposing due to abutting snow, we verify that the max-
imum color channel value of a small 8 x 8 neighbourhood
surrounding this keypoint within the extracted snow is be-
low an empirically selected threshold, 7¢ = 70. Finally, we
divide the image into a 10 x 10 grid and select keypoints at
random from these bins to limit the dataset size, and to re-
duce the presence of overlapping samples. Importantly, the
ORB descriptors are still generated on the combined image.

5. Experiments

We conducted experiments to evaluate stand-alone clas-
sification performance, and performance in SLAM use
cases. For stand-alone performance, we used test splits of
our U, OW, and UW datasets and evaluated F1 score, ac-
curacy, True Positive Rate (TPR) and True Negative Rate
(TNR). The datasets and their sizes are listed in Table 3.

Qualitative assessments of keypoint classification were
performed on four diverse underwater sequences, each pic-
tured in Figure 4, by extracting 2000 keypoints with the
ORB detector and classifying these frame-by-frame.

For evaluation in SLAM use-cases, we implemented our
classifiers into the pySLAM framework® which offers a
very customiseable SLAM-platform intended for experi-
mentation and education. pySLAM features most of the
expected attributes of a modern SLAM-system, including
keyframe management, local and global bundle adjustment,
outlier rejection with RANSAC, ratio testing, and motion
models with active matching [5]. Our experiments in pyS-
LAM were done on the synthetic VAROS and Snowy-
VAROS sequences.

5.1. Binary classification metrics

While training classifiers, we store the checkpoint which
achieved the best F2 score on the validation data-split. In

Zhttps://github.com/luigifreda/pyslam

Table 4, we list these models, and their binary classification
metrics on the separate test-splits of our datasets.

It is clear that both D-CLAS and P-CLAS have learned
the classification task successfully, yet P-CLAS maintains
remarkable results on most datasets, outperforming the de-
scriptor classifier in all datasets. However, D-CLAS has
an unavoidable benefit in that it requires no pre-processing
of the image if descriptors are present, and can operate far
more efficiently, surpassing speeds of 66000 keypoints per
second, compared to 14600 for P-CLAS, both on a GTX
1080 GPU. However, our testing shows that these differ-
ences can be explained by overhead from patch-extraction,
which can be improved compared to our implementation
since it assumes that keypoints in the same batch come from
different images, which is true for training, but otherwise is
typically false.

Both classifiers, when trained on the U dataset, score
high on the U test-split. However, we notice a decrease in
TPR when the superimposed OW and UW datasets are in-
cluded in the test data. This strongly suggests that U-trained
models only learn to recognise white blobs on an untex-
tured background, hence when more textured backgrounds
appear, the number of false negatives increase. P-CLAS in
particular, seems to rely too much on the predictable back-
grounds of the U training data, since its TNR is high on
both the U testset, and the unmodified + UW testset. This
suggests that training on varied backgrounds, and thus the
superimposed datsets, is particularly important for P-CLAS
models, since they will otherwise latch onto background
characteristics which are not encoded by the descriptors. To
be clear, the near perfect scores on U, highlight the simplic-
ity of the U datasets, rather than the prowess of the methods.

On the topic of what the descriptor encodes, it is feasi-
ble that the discrepancy which is consistently present in all
testsets between P-CLAS and D-CLAS can be explained
by the CNN being able to use more contextual clues from
the background which are not available from descriptors.
This could lead to P-CLAS models performing better than
D-CLAS models when encountering backgrounds familiar
from training, but worse on unfamiliar backgrounds.

When it comes to networks trained on superimposed
data, the models which were trained on all datasets per-
formed the best on every testset, except the U testset. Even
if the test dataset only included two of the three datasets
used in training, training on every dataset gave the best over-
all performance which could indicate an improved ability to
generalise to unseen data.

5.2. Qualitative results in Keypoint Classification

We begin with video A) in Figure 4, which features a
smooth ocean floor with small mounds of sand, and a some-
what dense cover of small and bright marine snow. Some
spots on the ground can be mistaken for marine snow in still



Unmodified UW +U OW +U All datasets
F1 Acc TPR TNR | Fl1 Acc TPR TNR | Fl1 Acc TPR TNR | Fl Acc TPR  TNR

U 0.999 0999 0999 1.0 0.617 0.792 0.446 0.999 | 047  0.687 0309 0.997 | 0.402 0.692 0.252 0.998

S UW+U | 0968 0972 0991 0.957 | 0948 0961 0.931 098 | 0.854 0.861 0904 0.825 | 0.877 0897 0.894 0.9
£ OW+U | 0998 0.998 0.996 0.999 | 0913 094 0.84 0.999 | 0.94 0.948 0.894 0.993 | 0.91 0932 0.839 0.996
All 099 099 0996 0.997 | 0.975 0.982 0955 0.998 | 0.961 0.965 0954 0975 | 0.964 0.971 095 0.985
8] 0945 0951 098 0929 | 0.778 0.848 0.712 0.929 | 0.809 0.833 0.784 0.873 | 0.763 0.82  0.707 0.899
%2 UW+U | 0944 0949 0978 0927 | 0913 0933 0931 0.935 | 0.892 0.898 0943 086 | 0893 0909 093  0.895
A OW+U | 0954 0959 0977 0946 | 0916 0937 0917 0949 | 0917 0925 0919 093 | 0909 0926 0906 0.939

All 0955 0961 0964 0958 | 0.935 0.952 0926 0967 | 0919 0928 0912 0.941 | 0.921 0.936 0.909 0.955

Table 4. Binary classification results by the classifiers. Rows denote the the network and its training data, while columns denote the test
dataset. The Unmodified dataset (U), Underwater superimposed (UW), and Overwater superimposed (OW) were combined and used for

testing. We provide F1-scores, accuracy, True Positive Rates (TPR), and True Negative Rates (TNR) for each case.

L

Figure 4. Frames from the four videos used for visualisation of keypoint classification. Red crosses indicate a snow classification, while
blue circles indicate a clean keypoint classification. 2000 Keypoints were detected with ORB per frame.

images. Models tested on this video mainly struggled with
classifying marine snow when transitioning between the
textureless region in the upper half of the image, and the tex-
tured region below. With P-CLAS models, those trained on
the U dataset and at least one superimposed dataset seemed
to handle this issue the best. This was true also for D-CLAS
models, though these showed slightly worse False Negative
Rates, and False Positive Rates on the ground.

Video B), features a complex structure of large, jagged,
and overlapping rocks. Of particular interest is the marine
snow seen in the top left corner during the beginning of
the sequence, which is strikingly bright and visible, despite
the rocks in the background. Thus, this sequence offers
a break from the typically textureless backgrounds which
are far more common. Performance on this sequence was

particularly bad from P-CLAS models trained only on the
U-data, which labelled all keypoints as ”clean”. Other P-
CLAS models trained on superimposed data were able to
improve upon this, but none were able to compete with D-
CLAS models, not even U-trained D-CLAS models. D-
CLAS models were hard to tell apart, but it seems like the
OW-trained model did worse, and both the U-trained model
and OW-trained model did best. These results may be an
indication that P-CLAS models rely more on properties of
the background when classifying. False Positive Rates were
very low for all models on this sequence.

Video C) features a bright yellow charging station, with
extreme amounts of large marine snow particles. This se-
quence highlights a weakness of current feature detectors
underwater, in the sense that the sequence’s lack of corners



and blobs (other than marine snow) leaves most corner de-
tectors with nearly no useful features, e.g. for pose estima-
tion. Despite a limited presence of useful keypoints, the
classifiers labelled many keypoints as clean. While TPR
rates were good on this sequence, false negatives were also
seen frequently. In the final part of this sequence, the robot
moves rapidly, giving the marine snow a stretched appear-
ance which is not present in the training data, leading to
high amounts of false negatives. While all classifiers exhib-
ited this trait, D-CLAS models were the worst afflicted.

Notably, models which were not trained exclusively on
the OW dataset showed a tendency to switch from a true
positive detection to a false negative when snow particles
moved in front of an uncommon background, e.g., the yel-
low beams of the charger sequence. However, OW-trained
models struggled more with classifying snow in textureless
regions. All classifiers struggled with the sequence’s largest
snow particles which are particularly close to the camera.

As a final test on False Positive Rates, video D) deliber-
ately features an insignificant amount of snow, yet in certain
frames, the pebbled texture of the ocean floor carries an ap-
pearance somewhat (though not completely) reminiscent of
marine snow. Most classifiers tested on this sequence, be
it patch or descriptor based, were not prone to mislabel the
ground as snow, with P-CLAS models generally achieving
near-perfect accuracy, and D-CLAS models not far behind.
However, the P-CLAS model which was trained on both
the underwater superimposed data and unmodified data was
a curious exception. Once the keypoint detector began de-
tecting on the ground, most keypoints were classified incor-
rectly as snow. This continued as the camera came closer
and the number of ground keypoints increased, but eventu-
ally stopped once the robot came even closer to the ground
and the likeness to marine snow disappeared.

To summarise these results, P-CLAS models typically
perform better than D-CLAS ones if the background is
known from training. With textured backgrounds, perfor-
mance drops off, in which case training with superimposed
datasets can help, but not completely. Compared to the
image-patches, ORB-descriptors seem to encode less in-
formation about the background, which can remove irrel-
evant information, and in certain instances help classifica-
tion, such as in video B) where D-CLAS models consis-
tently outperformed P-CLAS models. However, it could be
the case that too much information is lost through the ORB
representation, such that overall performance is reduced.

5.3. Qualitative results in an above-water sequence

To examine generalisability and applicability on a
broader range of tasks, we visualised classification on
a night-time road sequence with real snowfall, using an
OW+U-trained P-CLAS model. The sequence features a
twisting, snow-covered road with dimly lit trees on both

Figure 5. A point map from running pySLAM on VAROS without
snow and no classification. The pipe is properly tracked.

sides and snowfall illuminated by the car’s headlights. At
the bottom of the image is the contour of the car’s dash-
board. Performance on this sequence was mixed, but
showed some promise. Clean points placed on the road-
side, dashboard, and trees are typically classified correctly.
The same goes for snow keypoints in the darker regions of
the image. However, one struggle of the classifiers is the
snow just in front of the right headlight which is particularly
bright in front of a white background. This kind of image
patch is not found in the training data, so unsurprisingly it
is classified incorrectly. However, considering the overall
performance on this sequence it seems probable that given
finetuning on above-water data, our results should be trans-
ferable to the road domain as well. Generally, in above-
water scenarios snow often appears on more textured back-
grounds, which can be a source of decreased performance
not covered by this particular video. On the other hand, in-
creased illumination during the daytime can make the snow
less prominent in some footage.

5.4. Qualitative results with pySLAM

Testing SLAM performance on real-world sequences has
the potential to give the most realistic view of the effect
of snow classification. However, by using the synthetic
VAROS sequence with and without superimposed snow, we
are able to control the difficulty of both the background se-
quence and snow conditions. Furthermore, we are able to
compare results between Snowy-VAROS and the original,
snow-free VAROS sequence which lets us evaluate the re-
sults of keypoint rejection more definitively than most qual-
itative tests. However, we must expect that models trained
on superimposed images perform disproportionally better
on Snowy-VAROS, due to similarities in the superimposing
process of Snowy-VAROS and the training datasets. We
choose a subsequence of VAROS in which the robot travels
adjacent to a straight pipe (see Fig. 3). This pipe offers more
defined features for keypoint detection compared to other
sections of VAROS, and makes it easy to judge the tracking
quality by how accurately the straight pipe is mapped.

When testing with pySLAM alone on the Snowy-
VAROS sequence, a considerable amount of keypoints are
detected on snow, which lead to rapid tracking failure and
inconsistent behaviour between runs. During some runs,



Figure 6. A point map from running pySLAM without keypoint
classification on Snowy-VAROS. The path stops in a wall of snow
and the pipe appears to bend, unlike the source video.

"W!'i";:_ir Wif:'-;'.‘ mzﬁ;:@%"w;;? ¥ ;pw»,i; \--5,«’ t* g ;‘p»

Figure 7. A point map from running pySLAM with keypoint clas-
sification on Snowy-VAROS. The pipe is properly tracked, and
few snow keypoints are added to the map.

tracking fails completely, while in other runs the tracking is
closer to the movement seen in the sequence. When visu-
alising the sparse map made by pySLAM, seen in Figure 6,
we see what looks like a wall of snow prominently in the
map. Furthermore, the pipe which is completely straight in
the sequence appears bent in the point cloud.

Both P-CLAS and D-CLAS stabilised tracking in pyS-
LAM, to the extent that they were difficult to tell apart.
While they were unable to remove all unreliable points,
pySLAM continued tracking for far longer and was far more
reliable, giving consistent tracking outputs between runs.
An example can be seen in Figure 7, where the pipe ap-
pears straight in the point cloud like it should, with the ex-
ception of the very end. This behaviour is similar to that
seen in the VAROS sequence without snow and no classi-
fication, as seen in Figure 5, and occurs because pySLAM
is unable to detect a sufficient amount of good keypoints,
irrespective of the presence of snow. Since P-CLAS and
D-CLAS differed in earlier testing, their comparable per-
formance with pySLAM could indicate that as long as the
number of marine snow keypoints is reduced such that the
snow is no longer dominating the RANSAC motion hy-
potheses, tracking can continue with traditional outlier re-
jection. On Snowy-VAROS, out of 3000 features, D-CLAS
removed 1,627 keypoints and P-CLAS removed 1,366 key-
points in each frame on average.

For comparison, we run pySLAM on the original

VAROS dataset, which has nothing resembling marine
snow. With snow rejection enabled on the unmodified
VAROS sequence, out of 3,000 keypoints, we see on aver-
age 36 and 201 rejections, i.e., false positives, by D-CLAS
and P-CLAS, respectively.

6. Conclusion

In this paper we have demonstrated two methods for
classification of keypoints obtained from the ORB detec-
tor [18] in order to suppress the effect of marine snow. The
methods can be used to aid pose estimation, create keypoint
detection masks or assist in underwater image restoration.
Our results show that classifying snow, either with ORB de-
scriptors or image patches, can achieve near perfect perfor-
mance for snow in front of an untextured background. To
enable snow detection also on textured backgrounds, addi-
tional training data is necessary. We created such data by
extracting snow from underwater footage with untextured
background. This allowed us to overlay real marine snow on
arbitrary image material. Despite a lack of training on such
scenes, initial experiments on a night-time driving sequence
featuring snowfall suggest that the classifiers can be ap-
plied in above-water scenarios with some further finetuning.
Using the pySLAM framework we demonstrated how our
method can be incorporated as a keypoint rejection com-
ponent in a SLAM pipeline. We showed that our methods
were able to overcome the difficulties that a SLAM system
with standard outlier removal has with underwater footage
affected by marine snow. We provide the snow dataset to
the public in order to foster further research on the challeng-
ing topic of underwater and above-water SLAM under diffi-
cult visibility conditions. Extensions of our research could
examine other descriptors than ORB, novel classifiers, and
new methods of extracting snow.
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