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Figure 1. Comparison of 3D models produced by the MVG-MVS pipeline before and after categorization. The categorizations are derived
using the proposed framework DA-AE: Disparity-Alleviation Auto-encoder that allows for improved data representation in latent space
for better clustering (categories). The left image depicts a 3D model of heritage images before categorization with approx 8 million points.
The right images are 3D models of heritage images that have been categorized with approx 4.7 million points individually using DA-AE
thus yielding better 3D reconstruction.

Abstract

In this paper, we propose DA-AE: Disparity Alleviation
AutoEncoder for categorization of heritage images towards
3D reconstruction. Recent survey on preservation of her-
itage shows demand for the digitization and conservations
of heritage sites owing to their susceptibility to natural dis-
asters and human acts. Digital conservation can be facil-
itated via crowdsourcing of data useful for construction of
3D models. Data from multiple sites sourced may result
in elimination of relevant images due to the limitations of
the pipeline. Curation and categorization of the crowd-
sourced data enables better 3D reconstruction. 3D recon-
struction pipelines demand correlation between the data
and also tries to eliminate the irrelevant information. The
reconstruction pipeline is sensitive to selection of initial
pair for reconstruction. By categorising individual sites,

crowdsourced data can be used to create better 3D recon-
structed models. Categorization of crowdsourced data de-
mands learning robust representations of data. Towards
this, we propose DA-AE for improved representation and
categorization of data in latent space, along with a dispar-
ity alleviation loss. We demonstrate categorization as an
event, with clustering as a downstream task. We compare
our results of clustering with state-of-the-art methods on
benchmark datasets (MNIST, FashionMNIST, and USPS).
We demonstrate the effects of our categorization using cus-
tom dataset IDH10 and compare the results with state-of-
the-art methods. We show a systematic and qualitative in-
fluence of the proposed method on 3D reconstruction of
data.



Figure 2. Disparity-Alleviation Auto-Encoder (DA-AE): fθ represents DA Encoder, gθ represents Decoder, z is a latent in Latent Space
L, X is input in Natural Space N, and intermediate layer is tapped in Neural Representation space A.

1. Introduction

In this paper, we propose to learn representations of cul-
tural heritage data towards categorization and 3D recon-
struction towards presentation in digital space. Cultural her-
itage refers to the physical artefacts and intangible features
of a group or culture that are passed down from previous
generations, conserved in the present, and left to future gen-
erations. Cultural heritage deteriorates over time or is de-
stroyed by natural calamities or human acts. Cultural her-
itage preservation is both a goal and a need for the whole
globe. Conservation entails more than simply maintaining
a facade or immobilising a monument in time. We pre-
fer restoration over replacement to maintain the ambiance,
character, and a living piece of our past. With modern tech-
nology like photographs, video, audio, text, and photogram-
metry, conservation of cultural heritage is a simple and ef-
fective task.

Photogrammetry (3D reconstruction) is the art, science,
and technology of obtaining reliable information about
physical objects and the environment through processes of
recording, measuring, and interpreting photographic im-
ages. 3D reconstruction is a three-dimensional coordinate
measuring approach that use pictures as the primary metrol-
ogy medium. Creating 3D models of cultural heritage sites
necessitates a massive quantity of data. Crowdsourced data
collection is the process of constructing photographs with
the assistance of the community. The crowd-sourced data
incorporates information from numerous sources, which af-

fects the 3D reconstruction. The crowdsourced data com-
prises blur, occlusions, watermarks and so on, necessitating
curation for better 3D reconstruction [27]. The number of
categories in crowdsourced data is uncertain and demands
unsupervised categorization for improved 3D reconstruc-
tion [1] [28] [16].

Categorization of high-dimensional data is a time-
consuming and imprecise operation. Finding the data man-
ifold where visualisation of the data and its attributes are
disentangled in such a manner that learning the mapping
function to a lower dimension becomes easy is what repre-
sentation learning is all about. The representation learning
approach allows the system to turn raw data into an infer-
able state, which can then be utilised for downstream tasks
like categorization, classification, and clustering. Data clus-
tering has been studied for many years. Several methods
for distinguishing data based on intrinsic similarities have
been developed. Conventional clustering, subspace clus-
tering, and deep clustering are the three primary types of
clustering algorithms. As a downstream task, clustering
is susceptible to data representations obtained from hand-
crafted features or data-dimensionality reduction methods
(PCA, kernel-PCA, Auto-encoder, Nearest-Neighbor based
matrix factorization).

Current works in deep clustering (LSNMF [18], EnSC
[35], AECL [26], DeepClustering [2], DCN [31], DEC [30],
IDEC [7], SR-KMeans [10], VaDE [12], JULE [33], DE-
PICT [3], DynAE [20]) represents data in latent space us-



ing an autoencoder and clustering loss over the represen-
tation learning that help deep learning architectures to cat-
egorize the data. Due to unsupervised optimization of re-
construction loss, an autoencoder’s latent representations
are directly unreliable. Applying a clustering loss to latent
space of autoencoder may not generalize the given data.

Towards this, our contributions are:

• DA Encoder for extraction of disentangled latent space
supporting theory of indiscernibles via three point ap-
proximation.

• A novel optimization for unsupervised feature distil-
lation of latent space using Difference in Difference
technique

• A novel loss function DA Loss (LDA) to register the
variations in the latent space with Jacobian and non-
linear independent component analysis.

• We demonstrate the results of our methodology on
MNIST, FashionMNIST, USPS benchmark datasets
with a customized dataset IDH10, and compare the re-
sults with state-of-the-art methods using quantitative
metrics.

• We show the systematic and qualitative impact of our
proposed method on 3D reconstruction.

In Section 2, we discuss the proposed methodology DA
autoencoder. We discuss the results and its effect on 3D re-
construction of heritage sites in Section 3, and we conclude
in Section 4.

2. DA-AE: Disparity-Alleviation Auto-
Encoder

We model, DA-AE: Disparity-Alleviation Auto-Encoder
towards categorization of heritage images in order to
facilitate 3D reconstruction. Towards categorization, we
propose a process Disparity-Alleviation, to model DA
encoder with DA loss (LDA) as shown in Figure 2. DA
encoder and LDA are inspired from triangular inequality [4].

Preposition 1. Let us assume a Vanilla encoder fθ and
tap an intermediate layer, by calling it as DA Encoder. The
DA Encoder facilitates to form three point approximations
of the input X . The three approximations being the image
space (input) or natural space N, the neural representation
space A, and the latent space L as shown in Figure 2.

Preposition 2. Assume two arbitrary inputs Xi and Xj

to DA encoder yielding (ai, aj) in neural representation
space N and (zi, zj) in latent space L respectively. DA
Loss (LDA) models the per point difference D between
the arbitrary representation (i, j) as a point in abstract

space. We propose to minimize the disparity-alleviation
(triangular inequality) among DXi,Xj , Dai,aj and Dzi,zj

as shown in Figure 2.

Intuitively, the proposed DA autoencoder facilitates to
register the variations among spaces (image space N, neural
representation space A, and latent space L). The registra-
tion aids the encoder to learn an abstract feature space that
has discriminative flavour to it unlike AE [26], VAE [15],
stacked AE [37] and contractive AE [23]. The latent rep-
resentations of DA-AE are generalized for both abstraction
and generation. In this work, we demonstrate the event of
categorization with clustering as a downstream task using
the abstraction of DA-AE.

2.1. DA Encoder

DA Encoder faclitates to extract representations that sat-
isfies the DA Loss (LDA) as explained in Preposition 2
of Section 2. Towards representation of three point ap-
proximations of input, a and z are tapped from the DA
Encoder fθ as shown in Figure 3. Intuitively we per-
form three point approximation so that the proposed the-
ory of indiscernibles [5] is sufficed. Indiscernibles induces
a contractive-discriminative optimization approach to a au-
toencoder. The Computation of LDA towards optimization
of indiscernibility, demands for a maximum variational rep-
resentation of latent z and neural representation a. Towards
this, we propose to compute Jacobian of z and a with re-
spect to weight space fθ. The Jacobian introduces nonlin-
ear independent component analysis (nonlinear ICA) of the
respective representations [6].

Figure 3. DA Encoder

The over all effect of LDA along with nonlinear ICA is to
mimic the technique Difference in Difference which is stas-
tistical technique for evaluation of policies, trade patterns in
time series data.

Unlike Vanilla autoencoder where the representations



have a direct flow that yield randomness in the latent space,
our proposed methodology rectifies, registers and disentan-
gles the randomness from the latent. The disentanglement
is achieved from LDA yielding a pure approximation of the
latent. The pure latents facilitaes better deep clustering per-
formance towards aggrendiced 3D reconstruction of crowd-
sourced data.

Towards cluster assignment and cluster hardening, we
propose to use IDEC [7] as a plugin to DA-AE. IDEC with
DA-AE performs better on unsupervised deep clustering
with clustering loss Lclas an optimization approach.

2.1.1 Loss Functions

In this section, we propose SD-MSE structurally dissimilar
mean squared error and consider it as a reconstruction loss
(Lrecon) towards optimizing DA-AE weights. We propose
DA-Loss (LDA) towards minimizing the loss between per
point difference in abstract space optimizing the DA En-
coder weights.

• Reconstruction Loss (Lrecon): As shown in Figure
2, we reconstruct the image using a decoder gθ and
compute the loss Lrecon between the reconstructed
image X̂ and the original image X . This loss function
ensures that the latent space has the right representa-
tion of image X to up-sample the latent z.

– MSE (mean square error / L2 norm)

L(y, ŷ) =
1

N

N∑
i=0

(y − ŷi)
2 (1)

– SDSIM (structural dissimilarity) [21]

L(y, ŷ) = 1 − Lssim(y, ŷ) (2)

Lssim(y, ŷ) =
(2µyµŷ+c1)(2σyŷ+c2)

(µ2
y+µ2

ŷ+c1)(σ2
y+σ2

ŷ+c2)
(3)

where,

* c1 = (k1L)2, c2 = (k2L)2.

* L is dynamic range of pixel values.(2n−1)

* k1 = 0.01, k2 =0.03 by default.

– SD-MSE (structural dissimilarity with MSE)
The proposed loss for reconstructing DA-AE’s
output leverages the advantages of both MSE and
SDSIM loss. The term α ∈ (0, 1) is used for
normalizing the effects of combined loss.

Lrecon(y, ŷ) = α ∗ Lmse(y, ŷ)+

(1 − α) ∗ (LSDSIM(y, ŷ))

(4)

• DA Loss:

LDA = |DXi,Xj−DJai
,Jaj

|+|DJai
,Jaj

−DJzi
,Jzj

|
(5)

Here | · | represents absolute value and J represents
Jacobian with respect to DA Encoder fθ. The per point
difference D between arbitary representation (i, j) is
one of the below functions representing them in ab-
stract space.

– MSE (mean square error / L2 norm)

D(mi,mj) = (mi − mj)
2 (6)

– MAE (mean absolute error / L1 norm)

D(mi,mj) = |mi − mj| (7)

here, | · | represents absolute value.

Here m is a point in Natural Space N, Neural repre-
sentation space A, or Latent space L.

• Clustering Loss (Lcl): Lcl is used to assign cluster
assignments to data points directly. Therefore, no addi-
tional clustering algorithm on top of the learned latent
representations is required. K-means loss [32], clus-
ter assignment hardening loss [30], and agglomerative
clustering loss [33] are few examples.

– Kullback-Leibler (KL) divergence [14]: The
KL divergence is defined as the negative sum of
each event’s probability in P multiplied by the
log of the event’s probability in Q over the prob-
ability of the event in P [30].

KL(P ||Q) =
∑
x∈X

P (x)log
(P (x)

Q(x)

)
(8)

3. Results and Discussions
In this section, we demonstrate the results of our pro-

posed methodology and compare them with state-of-the-art
method on categorization using appropriate quality metrics.
This section includes the dataset used for the Experimenta-
tions, Experimental setup and details of the evaluation met-
rics.

3.1. Dataset

To evaluate our proposed methodology with state-of-th-
art KMeans [13], GMM [22], LSNMF [18], AC [11], SSC-
OMP [36], EnSC [35], SC [25], AECL [26], DeepClus-
ter [2], DCN [31], DEC [30], IDEC [7], SR-KMeans [10],
VaDE [12], JULE [33], DEPICT [3], DynAE [20] we con-
sider following datasets.



Table 1. DA-AE Architecture details, Here DA encoder architec-
ture is represented in and decoder architecture is represented in
.

Type Input → Output Activation Normalization
Linear 784 → 500 GELU Layernorm
Linear 500 →500 - -
Linear 500 →2000 GELU Layernorm
Linear 2000 → 10 - -
Linear 10 → 2000 GELU Layernorm
Linear 2000 → 500 GELU Layernorm
Linear 500 → 500 GELU Layernorm
Linear 500 → 784 Sigmoid -

• MNIST:- dataset consists of 70000 handwritten digits
which are centered and normalized into a dimension of
28-by-28 pixel size [17].

• Fashion MNIST:- dataset consists of 10 classes of dif-
ferent Fashion dress. There are 70000 images in total
which are centered and normalized into a dimension of
28-by-28 pixel size [29].

• USPS:- is a digitally scanned dataset from envolpes
by U.S. postal services. It contais 9298 gray scaled
images of 16-by-16 resolution whihc are centered and
normalized [9].

• IDH10:- dataset consists of curated 2944 images out
of imbalanced samples of 7000 images of 10 Indian
Heritage sites with structural similarities.

3.2. Experimental setup

In this section, we elaborate about the architectural de-
sign and optimization over loss functions discussed in Sec-
tion 2.1.1. We show ablation on benchmark-datasets with
its hyper-parameter settings.

3.2.1 Modeling of DA-AE

The architecture of DA-AE consists of an DA encoder and
decoder as shown in Figure 2. For comparison with IDEC
[7] and DEC [30] we keep the neural architecture same
as them with some minor changes as explained in Table
1. DA-AE’s parameters are optimised over loss function
Lrecon given in Equation 4 and LDA given in Equation 5
with adam optimizer. In Table 2 we show the selections of
hyperparameters obtained over different benchmark dataset
as shown in Algorithm 1.

3.2.2 DA-AE with IDEC plugin

While Training DA-AE for IDEC as a plug-in. DA-AE’s hy-
perparameters are set with-respect-to model with best clus-
tering acc using Grid-search algorithm [24]. The optimiza-

Table 2. Hyper-parameters for training DA-AE on benchmark
dataset

Dataset α lr batch size D
MNIST 0.75 0.0001 512 MAE

FMNIST 0 0.0001 512 MAE
USPS 1.0 0.0001 256 MSE
IDH10 0.5 0.0001 32 MSE

Algorithm 1: Pre-Training DA-AE
Input: Dataset → X
Output: DA-AE’s best weights; best

hyperparameter h
1 Set grid H for Hyperparameters from Table 2
/* α ∈ [0, 1], batch − size = [32, 256, 512], lr =

[0.0001] */

2 for h in H do
3 Train DA-AE for 200 epochs with loss as shown

in Equation 4.
4 if ACCnew >= ACCold then
5 RETURN h, weights fθ, gθ

tion strategies and neural architecture are explained in Sec-
tion 3.2.1. Consider a dataset X with n samples and each
sample Xi ∈ Rd, where d is dimension of data. The num-
ber of clusters k is a prior knowledge and the jth cluster-
centroid is denoted by µij ∈ Rd. Let the value of si ∈ [0,
1,...,k] represent the cluster index assigned to sample Xi.
With these settings we train DA-AE with IDEC as a plguin
with clustering loss Function explained in Section 2.1.1.

3.3. Evaluation Metrics

We evaluate the performance of proposed methodology
using appropriate quantitative metrics considering cluster-
ing as a downstream task towards categorization of images.
We consider Unsupervised Clustering Accuracy(ACC) and
Normalized Mutual Information(NMI) as a quantitative
metrics

• Unsupervised Clustering Accuracy(ACC):It em-
ploys a mapping function h to determine the optimal
mapping between the algorithm’s cluster assignment
output z and the ground truth y, which is specified as

ACC = maxh

∑N
i=1 1{y = h(zi)}

N
(9)

• Normalized Mutual Index(NMI): It evaluates the
mutual information I(y,z) between the ground truth la-
bels y and the cluster assignments z, then normalises it
using the average entropy of both ground labels H(y)



and cluster assignments H(z), which is defined as

NMI =
I(y, z)

1
2
[H(y) + H(z)]

(10)

Figure 4. We visualize the latent space z of autoencoder and DA-
AE on MNIST dataset. 1st columns from left represents latent
space of AE. 2nd columns represents latent space of DA-AE. The
highlighted region in GREEN illustrates the influence of the DA-
AE encoder, which has the maximum interclass variance when
compared to the one highlighted in BLACK from the autoen-
coder. The highligthed region depicts the impact of DA-AE en-
coder, which is able to distinguish classes with a large margin, as
compared to AE, with minimal interclass variations.

3.4. Results

In this section, we analyse the inference of our experi-
ments. The statistical analysis of our experiments and abla-
tion are summarized in Table 3.

We demonstrate the effect of Jacobian and nonlinear ICA
on DA-AE latent space as shown in Figure 4 and Figure 5.

We can infer that from Figure 4 (TSNE plots) that un-
like autoencoder, DA-AE has superior ICA and representa-
tion of four classes (9, 8, 5, and 4) of MNIST datatset have
high intra class variance. There are modest differences in
the latent representation of DA-AE and autoencoder in two
dimensions space, as shown in Figure 5 (PCA plots) , but
there are significant differences in higher dimensions (10
dimension) space, as demonstrated through clustering ac-
curacy in Table 3.

We demonstrate clustering accuracy of DA-AE, and
compare with state-of-the-art methods on benchmark
dataset as shown in Table 3. We can infer that our method-
ology DA-AE’s clustering accuracy has outperformed on all
the benchmark datasets without clustering loss. We can also
infer that our proposed DA-AE with IDEC (with cluster-
ing loss) as a plugin has outperformed on FashionMNIST
dataset.

Figure 5. We visualize the latent space z of autoencoder and
DA-AE on IDH10 dataset. 1st columns represents latent space
of AE. 2nd columns represents latent space of DA-AE. 1st row
represents PCA analysis of the latent space. 2nd row represents
TSNE plots of the latent space. Highlighted region in GREEN
shows the effect DA-AE encoder who’s manifold exhibits maxi-
mum interclass variance compared to the one which is highlighted
in BLACK from autoencoder.

We demonstrate the effects of categorization on 3D re-
construction using MVG-MVS pipeline [19]. We compare
the 3D models generated before and after categorization of
images through our proposed method DA-AE as shown in
Figure 1. We infer that, the reconstruction pipeline is sensi-
tive to selection of initial pair for reconstruction before cate-
gorization of data, as shown by 3D reconstruction in Figure
1. Our proposed framework is robust towards the sensitivity
of initial pair selection as demonstrated in Figure 1.

Using the Pytorch framework, the experiments are car-
ried out on an NVIDIA RTX 3090 GPU with 24GB RAM
and an AMD RYZEN threadripper 3970x CPU.

4. Conclusions
In this paper, we have proposed DA-AE: Disparity Alle-

viation AutoEncoder for categorization of heritage images
in order to facilitate 3D reconstruction. We have proposed
disparity alleviation loss LDA that facilitates DA Encoder
for better representation and categorization of data in la-
tent space. We have demonstrated the event of categoriza-
tion with clustering as a downstream task. We have demon-
strated the impact of DA-AE with disparity alleviation loss
and compared it with state-of-the-art methods (deep cluster-
ing) on benchmark datasets (MNIST, FashionMNIST, and



Table 3. The clustering performance of proposed methodology quantitatively using standard benchmark dataset in comparison with state
of the art methods. Highest is represented in Bold and second highesr is represented in Underlined

Methods MNIST FMNIST USPS IDH10
ACC NMI ACC NMI ACC NMI ACC NMI

W
ith

ou
tL

c
l

SC [25] (2002) 0.656 0.656 0.508 0.575 0.649 0.794 NA NA
LSNMF [18] (2007) 0.540 0.455 0.549 0.523 0.575 0.551 NA NA

GMM [22] (2008) 0.433 0.366 0.556 0.557 0.551 0.530 - -
KMeans [13] (2010) 0.532 0.500 0.474 0.512 0.668 0.627 0.378 0.390

AC [11] (2010) 0.621 0.682 0.500 0.564 0.683 0.725 NA NA
SSC-OMP [36] (2016) 0.309 0.315 0.100 0.007 0.447 0.503 NA NA

EnSC [35] (2016) 0.111 0.014 0.629 0.636 0.610 0.684 NA NA
AE+KMeans 0.807 0.730 0.582 0.614 0.720 0.698 0.422 0.439

DA-AE + KMeans (Ours) 0.904 0.805 0.668 0.647 0.776 0.782 0.605 0.551

W
ith

L
c
l

DEC [30] (2016) 0.843 0.797 0.518 0.546 0.762 0.767 NA NA
DCN [31] (2016) 0.830 0.810 0.501 0.558 0.688 0.683 NA NA

JULE [33] (2016) 0.964 0.931 0.563 0.608 0.950 0.913 NA NA
IDEC [7] (2017) 0.88 0.867 0.529 0.557 0.761 0.785 NA NA

VaDE [12] (2017) 0.945 0.876 0.578 0.630 0.566 0.512 NA NA
DEPICT [3] (2017) 0.965 0.917 0.392 0.392 0.899 0.906 NA NA

Best of DEC-DA [8] (2018) 0.986 0.962 0.580 0.650 0.987 0.967 - -
SR KMeans [10] (2019) 0.939 0.866 0.507 0.548 0.936 0.974 NA NA
DA-AE + IDEC (Ours) 0.958 0.902 0.678 0.673 0.788 0.816 0.657 0.623

W
ith

P
l DeepCluster [2] (2018) 0.797 0.661 0.542 0.510 0.562 0.540 NA NA

DynAE [20] (2020) 0.987 0.964 0.591 0.642 0.981 0.948 NA NA
DAC [34] (2020) 0.935 0.945 0.678 0.674 - - NA NA

USPS). We have achieved 10% increase on MNIST dataset,
18.3% increase on IDH10 dataset in comparison with au-
toencoder using DA-AE and 9.8% increase on Fashion-
MNIST in comparison with DEC-DA using DA-AE with
IDEC as a plugin. We have also shown, how representation
using DA-AE aids categorization and helps the MVG-MVS
pipeline overcome its absurdity when used in wild.
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