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Abstract

Unstructured object matching is a less-explored and very
challenging topic in the scientific literature. This includes
matching scenarios where the context, appearance and the
geometrical integrity of the objects to be matched changes
drastically from one image to another (e.g. a pair of pyja-
mas which in one image is folded and in the other is worn
by a person), making it impossible to determine a trans-
formation which aligns the matched regions. Traditional
approaches like keypoint-based feature matching perform
poorly on this use case due to the high complexity in terms
of viewpoint, scene context variety, background variations
or high degrees of freedom concerning structural configura-
tions. In this paper we propose a deep learning framework
consisting of a twins based matching approach leveraging a
co-salient region segmentation task and a cosine-similarity
based region descriptor pairing technique. The importance
of our proposed framework is demonstrated on a novel use
case consisting of image pairs with various objects used
by children. Additionally, we evaluate on Human3.6M and
Market-1501, two datasets with humans depicting various
appearances and kinematic configurations captured under
different backgrounds.

1. Introduction
Determining correspondences between pairs of images

is a challenging and intensely explored task in the com-
puter vision community. Its impact is directly visible in sub-
domains such as optical flow [20], camera calibration [11],
stereo reconstruction [35], structure from motion [29] and
even semantic region correspondence [7]. There are a mul-
titude of factors which contribute to the difficulty of such a
task. One is the phenomenon of scene-shift where we have
the same scene, however with totally different viewpoint, il-
lumination, background objects, thus creating context con-
fusion and ambiguity across both images. Another key fac-
tor which is difficult to overcome is caused by the structure
of the searched object as it might change drastically across
the viewpoints. Traditionally, the most commonly used ap-

Figure 1. Sample use-case for SCOTT framework. Given a cat-
alogue product with an available image set describing the product
and a compliance document describing the showcased product us-
ing text and visual content, our proposed SCOTT framework pre-
dicts whether there exists at least one match in the image pairs set
determined by the cartesian product between the catalogue image
set and the document image set. In this particular case, we have
an inflatable pillow which in the catalogue set is illustrated as in-
flated with different backgrounds and in the compliance document
is deflated and wrinkled.

proach is to search for a set of 2D keypoint correspondences
across the queried image set which are aligned via an in-
ferred transformation matrix [4, 5, 26].

One of the major limitations of such approaches is when
the matching object does not possess a structured geometri-
cal configuration to allow for such a heuristic to be applied.
Such examples are displayed in figure 2. This use-case is
often met in compliance check situations or image content
search applications as it can be seen in figure 1. Big stores
ensure that prior to making a product available on a specific
marketplace, it passes all the necessary compliance checks,
thus ensuring whether the object depicted in the attached
compliance document is the same as the object showcased
in the catalogue.

In this paper we address the unstructured object match-
ing topic with two major contributions:

• a framework for unstructured object matching, entitled



SCOTT (i.e. unStruCtured ObjecT maTching) based
on segmentation of the potential common regions of
interest followed by descriptor pairing using cosine-
similarity of the retrieved regions,

• an unstructured object matching problem with an eval-
uation dataset, entitled TIC (i.e. Toys In Catalogue),
with matching and non-matching pairs of objects used
by children (e.g. toys, sleepwear, accessories).

The motivation behind our proposed pipeline is to pro-
vide a matching algorithm which (i) can localize the po-
tentially similar regions from a semantic perspective using
a co-salient region segmentation pipeline and (ii), deter-
mines whether the retrieved regions represent the same ob-
ject without imposing a transformation flow from one image
to another. Thus, our work situates at the boundary between
the co-salient object detection literature which retrieves the
same class of regions across multiple regions, and the object
matching literature which retrieves correspondence flows of
2D keypoints across the queried images for the objects of in-
terest. To the best of our knowledge, we are the first to pro-
pose a dataset with an evaluation setup for this particular
matching use-case with ground-truth segmentation masks
for matching regions.

2. Related Work
In the following we discuss the most relevant recent ap-

proaches with respect to our proposed novel problem and
carefully position our work regarding to their claims.

2.1. Keypoint Based Matching.

A consistent body of literature related to image similar-
ity [5, 9, 13, 16, 17, 26, 27, 33, 37] is written around the idea
of keypoint correspondences for image matching as they are
robust to the major challenges involving object appearance.
However, the major limitation of these approaches is that
they require a rigid geometrical structure of the searched
objects across the queried images. Usually, these meth-
ods are suitable as proxy tasks for structure from motion or
triangulation-based approaches required for 3D based un-
derstanding of indoor and outdoor scenes. One relevant
work with respect to our proposed approach is [23]. The
authors perform a k-nn based search in the keypoint match-
ing space to retrieve the most similar images. The matching
is performed via a weakly supervised attention-based key-
point matching. These approaches are unsuitable for our
use-case as we are dealing with unstructured objects, with
undefined geometrical correspondence from one image to
another.

2.2. Contrastive Twins Representation.

Another relevant research thread [3, 6, 32] with respect
to our task is via image-level embedding comparisons. One

such approach is the work of [22]. The authors leverage a
twins architecture to obtain image-level embeddings which
are mapped using a contrastive loss function [10]. The main
advantage of such approaches is that via the contrastive
learning the image embedding space is constrained to act
as a densely represented clustering of the targeted classes.
In [8] the authors propose a similar full image embedding;
however, the embedding space representation is constrained
via triplet-loss. Also, a key aspect is that their method re-
quires the searched object to belong to a specific semantic
category. The main difference with respect to our pipeline
is that we provide a specific embedding for the salient fore-
ground region of both images independent with regard to
the semantic class of the matched object.

2.3. Datasets

The majority of the datasets [19, 28, 30] used for the
matching problems are designed around the idea of struc-
ture from motion or 3D reconstruction, which assumes that
the objects depicted in the pictures have the same geo-
metrical structure. One such example is the PhotoTourism
dataset [30] which contains iconic buildings from across the
world captured under different photographic scenarios. An-
other group of datasets [1, 18, 19, 25] is dedicated towards
developing the scientific topic of co-salient region detec-
tion. This translates to the idea of recognizing similar se-
mantic regions across a set of images. In [18], the authors
proposed a dataset with image sets grouped according to se-
mantic category of the foreground object depicted in them.
Additionally, for each category of images, they provide a
foreground segmentation masks for the objects of interest.

We propose a dataset for our targeted problem consisting
of matching and non-matching image pairs with various ob-
jects used by children. The depicted matching objects from
our dataset do not have a geometric structure across the
matching images to allow for an alignment transformation
across both structures and they do not necessarily belong
to the same semantic class (e.g. clothes, toys, paintings).
This is different than the previous matching datasets as we
are targeting class agnostic matching scenarios of objects
which do not necessarily possess a geometric structure. Our
work is placed at the boundary between these two domains,
object correspondence and semantically meaningful regions
retrieval. We aim at retrieving the semantically similar ob-
jects from a pair of images and decide whether the identity
of the highlighted objects from both images matches or not.
Thus, this topic created the necessity of introducing such a
dataset.

2.4. Co-saliency Detection.

Co-salient region detection aims at identifying the com-
mon image regions across the set of analysed images. Usu-
ally, these approaches [7, 14, 31, 34] are widely used in the



context of unsupervised video based segmentation, by fo-
cusing on the consistent temporal foreground regions. One
such example is the work of [21]. They present a twins
based architecture with a cross-attention based mechanism
for highlighting the most relevant image regions across
the analysed frames. In [2] the authors propose a self-
distillation transformer architecture to learn the salient ob-
ject of an image without the use of any form of supervision.
The work of [14] is similar to our approach. The authors
propose a common-foreground segmentation pipeline fol-
lowed by a contrastive loss approach for the foreground /
background region embeddings. Basically, they constrain
the model to have a clustered embedded space representa-
tion of the foreground regions and to make the background
embeddings as dissimilar as possible. However, they only
retrieve similar semantic regions, without making any in-
ference regarding the identity of the retrieved objects. For
example, they claim to segment image regions correspond-
ing to horses, however, they cannot infer whether the same
horse is depicted in an image set.

Our approach is different as we build a common image
pair embedding by paying attention at both foreground re-
gions obtained using a co-segmentation task of salient re-
gions. This recovers the regions with the same semantic
meaning, such as the general class of objects. Next, we
apply a binary classifier on top of a region descriptor pair-
ing heuristic leveraged by cosine-similarity to decide if the
highlighted semantic regions are actually the same objects
or not.

3. TIC Dataset
In order to provide results for our proposed use case, we

collected a dataset with pairs of images depicting match-
ing and non-matching objects. We downloaded publicly
available images of catalogue products, in particular chil-
dren activity related products (e.g. fashion items such as
pyjamas, hoodies or toys such as Lego sets, plush objects,
painting sets, toys, R/C cars, dolls). This use-case is fre-
quently found in compliance related automatic inspections.
One such example is when analysing test reports proving
the safety of one product with respect to the targeted age
category or the legislation compatibility regarding a certain
target market (see figure 1). In such a scenario, the first pre-
requisite condition is to validate whether the pictures within
the analysed test report depict the same product as the one
presented in the catalogue image set. Another use case is
when needing to decide whether a product is depicted in
two different catalogues.

In total, we collected 16, 313 images of children related
products. These images correspond to a total of 2, 653
unique products. A brief statistic of the distribution of im-
ages with respect to the unique products they are describing
is illustrated in table 1. Objects designed for children are

Statistic Min Max Median Mean ± Std
Value 2 28 6 6.19± 8.9

Table 1. Distribution of images in TIC per unique product
item. For each unique product item, we were able to retrieve on
average 6.19 images. However, the pool of retrieved images varies
quite significantly from 2 images up to 28 images per product.
Some of the images depict the same product, however, they might
highlight product brand description, or similar products from the
same category.

Figure 2. Sample of matching pairs from TIC dataset. Each
pair is highlighted by a green box. The dataset contains mainly
photos of objects designed for children such as toy sets, plush
items or sleepwear. Please notice the structural difference between
the objects in the illustrated matching pairs as well as the back-
ground variety of their corresponding images.

very diverse in terms of structure, scene context and appear-
ance when advertised in catalogues or online due to market-
ing reasons, thus they make an excellent candidate for our
use-case.

3.1. Annotation Protocol

We created an annotation plugin interface where for each
pair of images corresponding to a certain product, we anno-
tated them as matching or not matching class labels. This
step was required due to the fact that not all the images are
depictions of the same object as some may refer to specifi-
cation tables or logos of the company producing the object.
Additionally, the annotators were asked to draw a segmen-
tation mask on each image for the matching case.

As a result of the labelling process, we obtained a total
of 13, 172 pairs of matching and non-matching elements.
Out of these, there are 6, 586 (i.e. 50%) matching pairs
and 6, 586 (i.e. 50%) non-matching pairs (check figure 2
for matching pairs). There is also a number of 1, 753 pairs
which were ambiguous from a matching perspective and we
did not include those in the final dataset. These are image
pairs where the depicted objects belong to the same seman-
tic category, however, it is difficult even for humans to de-
cide whether it is the same object or not. One such example
is a Lego product assembled in totally different configura-



Figure 3. Detailed overview of our proposed unstructured object matching framework, SCOTT. Given a pair of images, IA and
IB , firstly, we obtain a pair of full image embeddings, FA and FB , by leveraging the CODER backbone. The potential co-salient image
regions from both images, RA and RB , are filtered using the segmentation masks MA and MB , respectively. Lastly, the co-salient regions
are provided as input to the MATCHER head to predict the final classification score. The entire pipeline is trained using a multi-task loss
composed of a segmentation loss, LSEG over the σA and σB heads, as well as a binary cross-entropy loss, LCE on top of MATCHER.

tions, which might represent the same brick set.

4. Unstructured Object Matching

We now introduce our proposed framework for unstruc-
tured object matching across an image pair, SCOTT. We
describe in detail the components of the model from a
methodological perspective.

Given a pair of images (IA, IB), where IA, IB ∈
Rw0×h0×3, we want to assign a similarity score S̃ ∈ [0, 1]
corresponding to the case of matching or non-matching ob-
jects, respectively. Thus, for each pair of images (IA, IB)
we have an attached pair of ground truth figure-ground
masks, MA,MB ∈ Rw×h and target class label S ∈ {0, 1}
corresponding to [NON-MATCH] or [MATCH], respec-
tively. The first step is to obtain a pair of feature maps de-
scribing the most relevant information from both inputted
images, IA and IB . At the same time, we are interested in
building the pair of maps in a co-dependent manner. For this
purpose, we build a COdependent encoDER (i.e. CODER)
inspired from the architecture of U-net [24]. It is composed
of CONV, RELU and MAX-POOL blocks which compress
the spatial image information in a depth-wise manner. We
denote each such block with ψi, where i represents the it-
eration index. Different from [24], we considered concate-
nating the signal from both images prior to passing it to the
next encoding block.

FA
i =

{
ψA
i (I

A), if i = 1

ψA
i ([F

A
i−1,F

B
i−1]), otherwise

After i = 4 iterations of information down sampling,
we end up with FA = FA

4 , where FA ∈ Rw×h×d with
w = w0

32 and h = h0

32 . In practice, the best results where ob-
tained with d = 512. The operation is similar with respect
to IB and ψB obtaining FB ∈ Rw×h×d. Basically, FA

and FB contain the encoded information of IA and IB in
a correlated manner. This is a mixed signal strategy, which
implicitly constrains the feature maps to be consistent. A
visualization of CODER and how it operates is illustrated
in figure 4.

4.1. Co-salient Image Region Segmentation

Once FA and FB are computed, we are interested in
determining the co-salient regions from both images. This
translates to recovering the potentially common objects. For
this purpose, we constructed two segmentation heads, σA
and σB , operating on the concatenated feature map informa-
tion, FA∥FB , where ∥ is the concatenation operator defined
as ∥ : (Rw×h×d,Rw×h×d) → Rw×h×2d. The segmenta-
tion heads are inspired from [12]. The intuition behind us-
ing the concatenated information is to learn an implicit cor-
relation between the co-salient regions of both images by
spatially overlapping the common information. The heads
σA and σB output two segmentation masks M̃A ∈ Rw×h



Figure 4. CODER. At each encoding step i, the feature represen-
tations, FA

i and FB
i , from each image are merged and passed to

the next processing encoding modules, ψA
i+1 and ψB

i+1. The idea
is to get a joint processing backbone which highlights the common
descriptors from both images.

and M̃B ∈ Rw×h corresponding to IA and IB , respec-
tively. They contain foreground and background segmenta-
tion masks of the co-salient objects from both images. The
foreground regions provided by MA and MB is used to
mask the irrelevant (background) features from FA and FB ,
respectively.

RA = {FA
ij ∈ Rd |MA

ij > α, i = 1..w, j = 1..h}
RB = {FB

ij ∈ Rd |MB
ij > α, i = 1..w, j = 1..h}

In practice, parameter α is validated. Intuitively, RA ∈
RP×d and RB ∈ RQ×d contain the foreground feature in-
formation extracted from FA and FB , respectively.

4.2. Saliency Guided Co-attention Based Matching

In this subsection we define the final component inside
our pipeline, the MATCHER. Its role is to make the fi-
nal inference over the highlighted co-salient feature regions
with respect to the unstructured object matching task. A
detailed view of it can be visualised in figure 5. Having
the co-salient descriptors RA and RB , the only remaining
thing is to decide whether they represent the same object or
not. Inspired from [21], we build a cosine similarity ma-
trix, S ∈ RP×Q, between the two foreground synthesized
descriptors. We used the cosine similarity as opposed to
the L1 or L2 distance, as it is more robust with respect to
the magnitude of the involved feature vectors. Also, the
cosine similarity measurement operates better in a high di-
mensional feature space, such as our architectural design
where d = 512.

By leveraging the similarity information from matrix S
we are able to pair the descriptors RA and RB as follows,

RA∪B =S⊙ (RA ×RB)

={Sij · [RA
i ,R

B
j ] | i = 1..P , j = 1..Q}

Figure 5. MATCHER. The segmented feature regions RA and
RB are compared using a cosine-similarity metric to produce a
similarity matrix S. This is used to generate a weighted ten-
sor, RA∪B ∈ RP×Q×2d, with all the feature combinations be-
tween RA and RB . Given that P and Q are different for every
pair, we apply [adaptive-pool] to bring its dimensionality
to RK×K×2d. Lastly, a CNN head, Φ is applied to obtain the final
classification score.

where RA∪B ∈ RP×Q×2d,× represents the cartesian prod-
uct for two sets and ⊙ represents the Hadamard product.
The necessity of S is to emphasize the similar pairs and ig-
nore dissimilar ones.

In the current format, the information encoded in RA∪B

is different for every pair of images IA and IB as the seg-
mented regions can be very different. To standardize its di-
mensionality for learning purposes, we apply an adaptive
max pooling layer to bring the dimensionality of RA∪B

from RP×Q×2d to RK×K×2d. In our experimental setup,
the best results were obtained with K = 64. Lastly, we ap-
ply a classification head, Φ, over the pooled set of features,
R̃A∪B , to provide us with the matching score between im-
ages IA and IB .

4.3. Training of SCOTT.

The entire SCOTT ensemble is trained by propagating
gradients through both CODER and MATCHER modules.
The model is penalized by a binary cross-entropy loss, LCE
on the predicted match score, S̃, and a cross-entropy im-
age segmentation loss, LSEG applied over the predicted seg-
mentation masks, M̃A and M̃B . The training procedure is
applied in 2 steps. Firstly, the CODER and the segmen-
tation heads σA and σB , respectively, are trained using the
matching pairs only. Secondly, the entire pipeline is trained
on all pairs using the steps mentioned in algorithm 1, with-
out backpropagating gradients through σA and σB for non-
matching pairs.

L = LCE(S, S̃) + LSEG(MA, M̃A) + LSEG(MB , M̃B)

5. Experiments
Experiments are performed on our proposed dataset TIC,

Human3.6M [15] and Market-1501 [36]. In the following



Algorithm 1: MATCHER
Input: RA ∈ RP×d and RB ∈ RQ×d

Output: S̃ ∈ {0, 1}
S← cosine-similarity(RA,RB)
RA∪B ← {Sij · [RA

i ,R
B
j ] | i = 1..P , j = 1..Q}

R̃A∪B ← adaptive-pool(RA∪B)
S̃ ← Φ(R̃A∪B)

Figure 6. Sample matches and segmentations from TIC test
set. Notice the appearance variation and the differences in terms
of context and geometrical composition of the searched objects.

Figure 7. Sample matches and segmentations of humans from
H3.6M. Notice that the posture configuration is very different in
all the pairs, and for some of them the human is facing front and
back in the matching pair.

we describe the experimental setup used for each dataset
and the most important results obtained with respect to our
proposed task.

5.1. TIC Dataset.

In the case of our own proposed dataset, TIC, we consid-
ered the following data split: 3, 293 pairs (1, 647 matching)
used for test, 658 pairs (329 matching) used for validation,
and 9, 221 pairs (4, 610 matching) used for train.

To show the performance of our method, we tested
against 2 additional baselines, ORB feature matching [26]
and SuperGlue deep matching algorithm [27]. Both of
the methods are focused around retrieving image keypoints
pairs that are similar across the corresponding image pair

Method Precision Recall F1-Score
ORB matching [26] 0.52 0.95 0.67

SuperGlue [27] 0.66 0.71 0.68

SCOTT w image embd. CODER 0.83 0.32 0.46
ResNet50 0.51 0.99 0.67

SCOTT w co-salient reg. embd. CODER 0.75 0.84 0.79
ResNet50 0.75 0.87 0.80

SCOTT w MATCHER CODER 0.79 0.83 0.81
ResNet50 0.81 0.80 0.80

Table 2. TIC Test Set Results. We report the precision, recall
and F1-score for the matching class. Our method is compared
against two relevant baselines, ORB feature matching [26] and
SuperGlue [27]. Additionally, we illustrate the performance us-
ing ResNet50 instead of CODER as well as 2 alternatives for
feature embedding integration: SCOTT with image embedding
which uses the entire FA and FB descriptors via a standard pool-
ing operation and SCOTT with segmented embedding which uses
standard pooling operation over the RA and RB region descrip-
tors. The highest score is obtained with SCOTT framework using
the proposed CODER backbone and MATCHER head.

Figure 8. Sample co-salient image region segmentation on Pho-
toTourism dataset. (First row) RGB content, (second row) seg-
mentation obtained with our method and (third row) segmentation
obtained using [7]. Notice that the images distribution is different
with respect to the ones used for training the algorithms. We aim
to illustrate the generalization property of the compared methods
on novel data distributions. Our model is able to pick up similar
images on outdoor scenes, with building objects, a totally different
context, object and appearance distribution from TIC.

they are related to. For each external method, we validated
the hyperparameters such as minimum number of keypoint
correspondences required for an object match or the score
threshold for matching keypoint descriptors. Comparison
results are available in table 2. Note that we are illustrat-
ing a novel matching use-case and we compensate the lack
of external method evaluation with different ablation stud-
ies within our framework, thus emphasizing the complexity
of the proposed task. We report the precision, recall and
F1-score for the image pairs corresponding to the matching
class.

In table 2 we perform several ablation studies with dif-
ferent components of our method to highlight the impact of



Method IoU Image A IoU Image B IoU Both Images
ResNet50 0.45 0.37 0.41
CODER 0.52 0.55 0.53
GCoNet [7] 0.33 0.31 0.32

Table 3. Segmentation Evaluation on PhotoTourism Dataset.
We report the performance on a subset of PhotoTourism using
CODER backbone, ResNet50 twin architecture backbone and [7].
Neither method was trained on PhotoTourism as we want to il-
lustrate the robustness of the co-saliency segmentation method on
novel, unseen data distribution.

Similarity Metric Precision Recall F1-Score
Cosine 0.79 0.83 0.81
L1 distance 0.74 0.82 0.77
L2 distance 0.76 0.81 0.79

Table 4. Ablation study on TIC with different similarity met-
rics required for building matrix S. We illustrate the importance
of the cosine-similarity metric used for weighting the feature pair-
ing matrix RA∪B . The cosine similarity leads to improved per-
formance metrics when compared to the L1 and L2 distance mea-
sures, respectively.

both CODER backbone and MATCHER head. To prove
the importance of CODER, we experimented by plugging
in a twins ResNet50 backbone inside SCOTT. Also, we
use 3 different embedding merging strategies to demon-
strate the importance of MATCHER: (a) pooling the en-
tire image embedding from each FA and FB , thus incorpo-
rating in a single descriptor the entire image information
(i.e. both foreground and background regions), (b) pool-
ing the foreground regions encoded in RA and RB , thus
using a descriptor which synthesizes the foreground infor-
mation of each image individually and (c) the MATCHER
foreground information merging strategy of both images.
The best performance is obtained with MATCHER (see
table 2 line 9) as it optimally combines the embeddings
of the foreground regions of IA and IB via similarity ma-
trix S. The poor performance obtained using the entire
image embedding is caused by the ambiguity induced by
the background regions which can be similar or radically
different for matching cases. Table 4 provides a com-
parative overview of the performance associated with the
three metrics for the matrix S. For this experiment, we
used the SCOTT framework with CODER backbone and
MATCHER classification head. The best performance is
obtained using the cosine-similarity as it treats the region
descriptors as vectors and computes their alignment, being
robust to their magnitude and dimensionality.

We illustrate in figure 8 the visual performance of the
segmentation module, σA and σB , on PhotoTourism [30]
using our proposed SCOTT framework trained solely on

Method Precision Recall F1-Score
Human3.6M

SuperGlue [27] 0.49 0.96 0.65
SCOTT w image embedding 0.55 0.88 0.67
SCOTT w co-salient region embedding 0.68 0.93 0.78
SCOTT w MATCHER 0.76 0.86 0.8

Market-1501
SCOTT trained on Human3.6M 0.6 0.66 0.63
SCOTT fine-tuned on Market-1501 0.65 0.97 0.78

Table 5. H3.6M and Market-1501 Results. In this setup, we
used only CODER backbone and varied the classification head
used. The best performance on H3.6M is obtained using SCOTT
with MATCHER, with an improvement of 0.02 F1-score over
co-salient region embedding. For Market-1501 we compared the
best performing model trained on H3.6M against the same model
pretrained on H3.6M and fine-tuned on Market-1501 using binary
cross-entropy loss.

TIC. In table 3 we quantitatively compare our work against
[7]. We labelled 1, 000 random pairs with different build-
ing landmarks to evaluate the performance of the segmen-
tation method. Neither method was trained on this dataset
as we want to illustrate the generalization property for the
task of co-salient region detection. Our method is able to
pick up the common potential objects given the context, il-
lumination, foreground or viewpoint changes. With this ex-
periment we want to emphasize that with a simple feature
map concatenation approach, we can highlight the common
semantically meaningful objects, without the usage of ad-
vanced feature merging heuristics. In figure 9, left, we il-
lustrate the F1-score distribution across TIC test set with
respect to the image ratios of the segmented regions, RA

and RB . The highest scores occur when the segmented re-
gions are sufficiently large in both images (i.e. ≈ 30−60%).
In the right side of the figure, we illustrate a spatial distribu-
tion of segmented regions ratios. The majority are relatively
small with respect to the image size, ≈ 10− 40%. In figure
6 we illustrate sample matching and segmentation results
of our method on TIC test set proving robustness to struc-
ture, semantics of the matched objects, background context
as well as appearance. Also, in figure 10 we illustrate sit-
uations where our proposed SCOTT is unable to correctly
match or segment the correct objects. Usually, these situa-
tions occur when there are multiple matching objects in the
same image pair, as is the case of the middle pair of images
or when there are objects with the same semantics, and very
similar appearance representation.

5.2. Human3.6M Dataset.

To illustrate the versatility of our framework, we test
against the task of human matching on the Human3.6m [15]
dataset. The RGB data was collected using 4 different RGB
cameras. The actions are performed by 10 different hu-
man subjects. The viewpoint and action variety made this



Figure 9. Visual correlation between F1-scores and image ra-
tios of the segmented pairs over TIC test set. (Left) We illustrate
the F1-score distribution across the P , Q image ratios. (Right)
Spatial histogram of segmented regions (i.e. RA and RB) ratios
with respect to size of images (i.e. IA and IB).

Figure 10. Failure cases of SCOTT on TIC dataset. Our al-
gorithm has difficulty in retrieving the correct match when there
are multiple objects under the same semantic category present in
the image which have a highly similar appearance. Such is the
case of the leftmost example, where in the left image we have two
kids holding a red toy tulip and in the right side image, we have 3
identical toy tulips, however, of different colors.

dataset perfectly suitable for our proposed framework. The
image pair sampling is performed as follows: subjects 1,
5, 6 and 7 for train with 34, 889 pairs, subjects 8, 9 and
11 for validation with 2, 349 pairs, and subjects 2, 3 and
4 for test with 24, 420 pairs. Numerical results with our
approach are available in table 5. We illustrate matching
results obtained with (a) the embedding of the entire im-
age, (b) the embedding of the segmented region and (c) the
proposed MATCHER embedding strategy. The best per-
forming method is MATCHER, however the improvement
is minimal with respect to the matching based on the seg-
mented region embedding. The matching using [27] per-
forms the worst, as it gets confused by the similar back-
ground, thus creating many false positives. In figure 7 we il-
lustrate sample matches together with segmentation results.
The method is able to cope with front / back views of and
different human pose configurations.

5.3. Market-1501

We extend the experiments on human matching on the
Market-1501 [36] dataset. It contains 32, 668 images of
1, 501 different persons taken from 6 disjoint cameras. For

Figure 11. Sample segmentation and matching results on
Market-1501 dataset. On the first 2 rows we illustrate match-
ing and figure-ground segmentation masks and on the third and
fourth rows non-matching pairs. The segmentations are obtained
with using SCOTT which was trained on Human3.6M only.

our experimental setup, we used the train set of 750 persons
and split it in 3 sets: train with 550 subjects, validation with
50 subjects and test with 150 subjects. We have no avail-
able segmentation masks so we use the pretrained segmen-
tation weights of SCOTT from Human3.6M. We compared
the performance of the MATCHER head by using the pre-
trained weights from Human3.6M and a fine-tuned model
on Market-1501 train set. Performance details are avail-
able in table 5. We observe an increase of 0.15 f1-score by
fine-tuning the MATCHER head. This is obtained using
the segmentation heads σA and σB trained on Human3.6M.
Visual results on Market-1501 are illustrated in figure 11.

6. Conclusions
We presented a novel use-case in the context of object

similarity, namely unstructured object matching. We pro-
posed TIC dataset containing pairs of images depicting ob-
jects designed for children with 13, 172 pairs of matching /
non-matching objects. Additionally, we proposed a frame-
work based on co-salient region detection and classifica-
tion using cosine-similarity descriptor pairing of recovered
regions. The tackled problem is hard as we are dealing
with scenarios where the searched object does not possess
a rigid geometrical structure, thus making it impossible to
determine a correspondence flow between the images. We
demonstrated the effectiveness of our proposed approach on
TIC, H36M and Market-1501, and emphasizing the diffi-
culty of the proposed use case.
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